Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1335-1341    DOI: 10.3724/SP.J.1037.2011.00141
论文 Current Issue | Archive | Adv Search |
LOW TEMPERATURE DEFORMATION BEHAVIOR OF HIGH–NITROGEN NICKEL–FREE AUSTENITIC STAINLESS STEELS
XU Mingzhou, WANG Jianjun, LIU Chunming
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

XU Mingzhou WANG Jianjun LIU Chunming. LOW TEMPERATURE DEFORMATION BEHAVIOR OF HIGH–NITROGEN NICKEL–FREE AUSTENITIC STAINLESS STEELS. Acta Metall Sin, 2011, 47(10): 1335-1341.

Download:  PDF(1202KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The low–temperature deformation behaviors of two high–nitrogen nickel–free austenitic stainless steels (HNSs) with different N content were investigated by impact test, tensile test, XRD and TEM. The results indicate that HNS shows apparent ductile–to–brittle transformation (DBT) and work–hardening at low temperature. In the range of the experimental steels’ Mn content, the increase of Mn content improved the plasticity and the toughness at low temperature, and decreased the DBT temperature of HNS. Deformation–induced martensite transformation occurs in steel 18Cr–12Mn–0.55N during tensile deformation at low temperature, but the content of martensite is low and the decrease of temperature has no obvious effect on its formation. Deformation–induced martensite enhances the work–hardening ability but decreases the plasticity and toughness of HNS at low temperature. The decreases of work–hardening ability and stacking fault energy with temperature decreasing are the main reasons for brittle fracture of Fe–Cr–Mn HNS at low temperature.
Key words:  high–nitrogen austenitic stainless steel      impact toughness      mechanical property      martensite transformation     
Received:  17 March 2011     
Fund: 

Supported by National Science and Technology Major Project of China (No.2009ZX04008–021) and Project of Department of Science and Technology of Liaoning Province (No.2007221007)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00141     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1335

[1] Cheng X N, Dai Q X. The Design and Control of Austenitic Stainless Steel. Beijing: National Defense IndustryPress, 2005: 3

(程晓农, 戴起勋. 奥氏体钢设计与控制. 北京: 国防工业出版社, 2005: 3)

[2] Mudali U K, Raj B, translated by Li J, Huang Y H. High Nitrogen Steels and Stainless Steels, Manufacturing, Properties and Applications. Beijing: Chemical Industry Press, 2006: 5

(Mudali U K, Raj B著, 李晶, 黄运华  译. 高氮钢和不锈钢--生产、性能与应用. 北京: 化学工业出版社, 2006: 5)

[3] Ilola R J, Hänninen H E, Ullakko K M. ISIJ Int, 1996; 36: 873

[4] Tomota Y, Endo S. ISIJ Int, 1990; 30: 656

[5] Gavriljuk V G, Sozinova A L, Foct J, Petrov J N, Polushkin Y A. Acta Mater, 1998; 46: 1157

[6] Milititsky M, Matlock D K, Regully A, Dewispelaere N, Penning J, Hanninen H. Mater Sci Eng, 2008; A496: 189

[7] Tomoto Y, Xia Y, Inoue K. Acta Mater, 1998; 46: 1577

[8] Ishizaka J, Orita K, Terao K. Tetsu Hagan´e, 1992; 78: 1846

[9] Tobler R L, Leyn D. Metall Mater Trans, 1988; 19A: 1626

[10] Ojima M, Adachi Y, Tomota Y, Ikeda K, Katada Y. J Jpn Inst Met, 2009; 73: 283

[11] Milititsky M, Matlock D K, Regully A. Mater Sci Eng, 2008; A496: 189

[12] Saller G, Hahn K S, Scheu C, Clemens H. Mater Sci Eng, 2006; A427: 246

[13] Liu S X, Liu X M, Liu R, Wang C X, Xing F. J Iron Steel Res, 2005; 17: 40

(刘树勋, 刘宪民, 刘蕤, 王春旭, 邢峰. 钢铁研究学报, 2005; 17: 40)

[14] Simmons J W. Acta Mater, 1997; 45: 2467

[15] Breedis J, Robertson W. Acta Metall, 1962; 10: 1077

[16] Lee T H, Oh C S, Kim S J. Scr Mater, 2008; 58: 110

[17] Liu S Y, Liu D Y, Liu S C. J Mater Sci, 2007; 42: 7514

[18] Cheng X N, Dai Q X. The Design and Control of Austenitic Stainless Steel. Beijing: National Defense Industry Press, 2005: 28

(程晓农, 戴起勋. 奥氏体钢设计与控制. 北京: 国防工业出版社, 2005: 28)

[19] Gavriljuk V G, Berns H. High Nitrogen Steels. Berlin: Springer, 1999: 192

[20] Kibey S, Liu J B, Curtis M J, Johnson D D, Sehitoglu H. Acta Mater, 2006; 54: 2991

[21] Hu B F, Jia C C. Acta Metall Sin, 2001; 37: 703

(胡本芙, 贾成厂. 金属学报, 2001; 37: 703)

[22] Hübner W, Pyzalla A, Assmus K, Wild E, Wroblewski T. Wear, 2003; 255: 476

[23] Gulyaev A P, Lebedev D V, Gadzhibalaev G A. Met Sci Heat Treat, 1973; 15: 1051

[24] Wang S T. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(王松涛. 中国科学院金属研究所博士学位论文, 沈阳, 2008)

[25] Byun T S, Hashimoto N, Farrell K. Acta Mater, 2004; 52:3889

[26] Wang W, Yan W, Yang K, Shan Y Y. J Mater Eng Perform,2010; 19: 1214
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!