Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1049-1056    DOI:
论文 Current Issue | Archive | Adv Search |
CALCULATION OF MECHANICAL PROPERTIES OF α2-Ti-25Al-xNb ALLOYS BY FIRST-PRINCIPLES
ZENG Xianbo; PENG Ping
School of Materials Science and Engineering; Hunan University; Changsha 410082
Cite this article: 

ZENG Xianbo PENG Ping. CALCULATION OF MECHANICAL PROPERTIES OF α2-Ti-25Al-xNb ALLOYS BY FIRST-PRINCIPLES. Acta Metall Sin, 2009, 45(9): 1049-1056.

Download:  PDF(901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Intermetallic alloys based on Ti3Al are potential high-temperature structural materials due to their low density, high specific strength, excellent creep behavior and good oxidation resistance, but their application has been hampered by the low room--temperature ductility and ambient brittleness. Numerous experiments have shown Nb is most effective additive to improve their ductility and toughness at low temperature, but the influence of Nb content on the mechanical properties of Ti3Al-based alloys has not been understood. In this work, using the first-principles pseudo--potential plane wave method, ultimate tensile strength σb of α2-Ti-25Al-xNb (x=0-12, atomic fraction, %) single crystal with D019 structure and bulk modulus B, Young's modulus E as well as shear modulus G of α2-Ti-25Al-xNb polycrystalline alloys have been calculated, and their ductile/brittle behavior is characterized and assessed by the Cauchy pressure (c12-c44) and the G/B ratio. The results reveal the ultimate tensile strength σb of α2-Ti-25Al-xNb crystals and the elastic moduli (B, E, G) of α2-Ti-25Al-xNb alloys monotonously increase with the addition of Nb in the whole range of x=0-12. Meanwhile a very sensitive ductile/brittle behavior of α2-Ti-25Al-xNb alloys to Nb content is also detected. The addition of Nb with low content is demonstrated to be profitable for weakening of the brittleness of α2-Ti3Al alloys, and the toughening tendency of α2-Ti-25Al-xNb alloys increases as increasing Nb addition in the range of =0-6. Whereas in the range of x=7-9, relative to α2-Ti3Al alloys no toughening effect can be seen as Ti in Ti3Al being partially substituted by Nb. As x≥10, the toughening effect of Nb addition is activated again, and an obvious improvement in the ductility and strength of α2-Ti-25Al-12Nb alloy is observed as comparing with α2-Ti-25Al-6Nb alloy. For this toughening and strengthening effect of Nb addition a reasonable explain was given by means of the analysis of the density of states (DOS) and the projective density of states (PDOS) of α2-Ti-25Al-xNb (x=0, 6, 7, 12) crystals.

Key words:  α2-Ti3Al      Nb alloying      mechanical property      first-principles calculation     
Received:  10 February 2009     
ZTFLH: 

TG113.25

 
Fund: 

Supported by National Basic Research Program of China (No.2006CB605104) and National Natural  Science Foundation of China (No.50771044)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1049

[1] Ward C H, Williams J C, Thompson A W. Scr Metall Mater, 1993; 28: 1017
[2] Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley–VCH, 2003: 54
[3] Zou J, Fu C L, Yoo M H. Intermetallics, 1995; 3: 265
[4] Ravi C, MathiJaya S, Valsakumar M C, Asokamani R. Phys Rev, 2002; 65B: 155118
[5] Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871
[6] Kestner–Weykamp H T, Ward C H, Broderick T F, Kaufman M J. Scr Metall, 1989; 23: 1697
[7] Hu Q M, Yang R, Xu D S, Hao Y L, Li D,Wu W T. Phys Rev, 2003; 68B: 054102
[8] Kamat S V, Gogia A K, Banerjee D. Acta Mater, 1997; 46: 239
[9] Kim Y W, Froes F H. In: Whang S H, Liu C T, Pope D P, Stiegler J O, eds., High–Temperature Aluminides and Intermetallics. Warrendale: TMS, 1990: 465
[10] Paradkar A, Kamat S V, Gogia A K, Kashyap B P. Mater Sci Eng, 2008; A491: 390
[11] Cao J X, Bai F, Li Z X. Mater Sci Eng, 2006; A424: 47
[12] Gogia A K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M. Intermetallics, 1998; 6: 741
[13] Xu D S, Song Y, Li D, Hu Z Q. Mater Sci Eng, 1997; A234: 230
[14] Hao Y L, Xu D S, Cui Y Y, Yang R, Li D. Acta Mater, 1999; 47: 1129
[15] Song Y. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1997
(宋岩. 中国科学院金属研究所博士学位论文, 沈阳, 1997)
[16] Music D, Schneider J M. Phys Rev, 2006; 74B: 174110
[17] Liu Y L, Liu L M, Wang S Q, Ye H Q. Intermetallics, 2007; 15: 428
[18] Segall M D, Lindan P J D, ProbertMJ, Pickard C J, Hasnip P J, Clark S J, Paynel M C. J Phys Condens Mater, 2002; 14: 2717
[19] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[20] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[21] Fischer T H, Almlof J. J Phys Chem, 1992; 96: 9768
[22] Tanaka K, Okamoto K, Inui H, Minonishi Y, Yamaguchi M, Koiwa M. Philos Mag, 1996; 73A: 1475
[23] Fu C L, Zou J, Yoo M H. Scr Metall Mater, 1995; 33: 885
[24] Ramer N J, Rappe A M. Phys Rev, 2000; 62B: 743
[25] Souvatzia P, Katsnelson M I, Simak S, Ahuja R, Eriksson O, Mohn P. Phys Rev, 2004; 70B: 012201
[26] Hu Q K, Wu Q H, Ma Y M, Zhang L J, Liu Z Y, He J L, Sun H, Wang H T. Phys Rev, 2006; 73B: 214116
[27] Past W, Gregorova E. Ceram Silik, 2004; 48: 14
[28] Bercegeay C, Bernard S. Phys Rev, 2005; 72B: 214101
[29] Pugh S F. Philos Mag, 1954; 45: 823
[30] Pettifor D G. Mater Sci Technol, 1992; 8: 345
[31] Lu G H, Deng S H, Wang T M, Kohyama M, Yamamoto P. Phys Rev, 2004; 69B: 134106
[32] Luo W D, Roundy D, Cohen M L. Phys Rev, 2002; 66B: 94110
[33] Nielsen O H. Phys Rev, 1985; 32B: 3780
[34] Jahn´atek M, Krajc´? M, Hafner J. Phys Rev, 2005; 71B: 024101
[35] Kishida K, Yoshikawa J, Inui H, Yamaguchi M. Acta Mater, 1999; 47: 3405

[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!