Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1057-1062    DOI:
论文 Current Issue | Archive | Adv Search |
INFLUENCES OF ULTRASONIC PULSE SQUARE-WAVE CURRENT PARAMETERS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 2219 ALUMINUM ALLOY WELD JOINTS
CONG Baoqiang; QI Bojin; ZHOU Xingguo; LUO Jun
School of Mechanical Engineering and Automation; Beihang University; Beijing 100191
Cite this article: 

CONG Baoqiang QI Bojin ZHOU Xingguo LUO Jun. INFLUENCES OF ULTRASONIC PULSE SQUARE-WAVE CURRENT PARAMETERS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 2219 ALUMINUM ALLOY WELD JOINTS. Acta Metall Sin, 2009, 45(9): 1057-1062.

Download:  PDF(1508KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to overcome some problems in variable polarity gas tungsten arc welding (VP-GTAW) employed for welding aluminum alloy components, poor strength and ductility of weld metal, solidification cracking and weld porosity, a novel ultrafast-convert high frequency pulsed current VP-GTAW technique is developed. The current converting speed in the novel technique is enhanced from less than 10 A/μs to more than 50-100 A/μs and high frequency pulsed current which has a frequency of more than 20 kHz is exactly integrated in the positive polarity current duration. It is expected that the novel pulsed VP-GTAW technique can improve the weld quality of aluminum alloy significantly. Thus, it is imperative to understand the effect of pulsed current parameters on the weld characteristics in the pulsed VP-GTAW process. The measured results of 2219-T87 high strength aluminum alloy weld joints show that the application of ultrasonic pulse current makes the coarse grains in weld zone change to the fine equiaxed grains, and a band-like zone with finer equiaxed non-dentrites appears. The width of weld fusion zone is obviously decreased and the mechanical properties of weld joints are predominantly improved. The improvements of the structure and weld properties can be significantly enhanced with the increases of the ultrasonic pulse current amplitude and pulse frequency, and decrease of the pulse duty cycle in certain ranges. Compared with the conventional VP-GTAW, tensile strength and elongation of weld joints are increased by about 22% and 111%, respectively, under the conditions of pulse current amplitude of 100 A, pulse frequency of 40 kHz and pulse duty cycle of 20%.

Key words:  high strength aluminum alloy      ultrasonic pulse current      variable polarity      equiaxed
non-dentrite
      mechanical property     
Received:  26 February 2009     
ZTFLH: 

TG457.14

 
  TG442

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1057

[1] Albertini G, Bruno G, Dunn B D, Fiori F, Reimers W, Wright J S. Mater Sci Eng, 1997; A224: 157
[2] Liu C F. Aeronaut Manufact Technol, 2003; (2): 22
(刘春飞. 航空制造技术, 2003; (2): 22)
[3] Yang C G, Guo X M, Hong Z F, Qian B N. Acta Metall Sin, 2005; 41: 1077
(杨成刚, 国旭明, 洪张飞, 钱百年. 金属学报, 2005; 41: 1077)
[4] Qi B J, Cong B Q. Trans Chin Weld Inst, 2008; 29: 57
(齐铂金, 从保强. 焊接学报, 2008; 29: 57)
[5] Cong B Q, Qi B J, Zhou X G, Luo J. Trans Chin Weld Inst, 2009; 30: 25
(从保强, 齐铂金, 周兴国, 罗 军. 焊接学报, 2009; 30: 25)
[6] Cong B Q, Qi B J, Zhou X G, Luo J. Aerospace Mater Technol, 2009; 39: 71
(从保强, 齐铂金, 周兴国, 罗 军. 宇航材料工艺, 2009; 39: 71)

[7] Cook G E, Eassa E H. IEEE Trans Indust Applic, 1985; 1A–21: 1294
[8] Cong B Q. PhD Thesis, Beihang University, Beijing, 2009
(从保强. 北京航空航天大学博士学位论文, 北京, 2009)
[9] Guo X M, Yang C G, Qian B N, Xu Q, Zhang H Y. Acta Metall Sin, 2005; 41: 397
(国旭明, 杨成刚, 钱百年, 徐强, 张洪延. 金属学报, 2005; 41: 397)
[10] Hunt J D. Mater Sci Eng, 1984; A65: 75
[11] Sun J S, Wu C S. Acta Phys Sin, 2001; 50: 209
(孙俊生, 武传松. 物理学报, 2001; 50: 209)
[12] Kou S, Le Y. Weld J, 1986; 65: 305
[13] Yunjia H, Frost R H, Olson D L, Edwards G R. Weld J, 1989; 68: 280
[14] Kou S, Le Y. Metall Trans, 1988; 19A: 1075
[15] Dvornak M J, Frost R H, Olson D L. Weld J, 1991; 70: 271
[16] Hao C Y, Yu E J, Ying H J, Shi C G. Acta Metall Sin, 1996; 32: 647
(郝传勇, 于尔靖, 应慧筠, 施成根. 金属学报, 1996; 32: 647)
[17] Wang Q, He J C, Kawai S, Iwai K, Asai S. Acta Metall Sin, 2002; 38: 961
(王强, 赫冀成, 川合悟, 岩井一彦, 浅井滋生. 金属学报, 2002; 38: 961)
[18] Yu E J, Hao C Y, Ying H J, Shi C G, Li G H. Trans Chin Weld Inst, 1996; 17: 1
(于尔靖, 郝传勇, 应慧筠, 施成根, 李敢红. 焊接学报, 1996; 17: 1)
[19] Gutierrez A, Lippold J C. Weld J, 1998; 77: 123
[20] Reddy G M, Gokhale A A. J Mater Sci, 1997; 32: 4117
[21] Huang C, Kou S. Weld J, 2000; 79: 113
[22] Huang C, Kou S. Weld J, 2001; 80: 9

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!