Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 697-703    DOI:
论文 Current Issue | Archive | Adv Search |
ULTRAFINED MICROSTRUCTURE OF HYPEREUTECTOID STEEL BY WARM DEFORMATION OF MARTENSITE
CHEN Wei1; LI Longfei1; SUN Zuqing1; ZHANG Yan1;YANG Wangyue2
1.State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
2.School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

CHEN Wei LI Longfei SUN Zuqing ZHANG Yan YANG Wangyue. ULTRAFINED MICROSTRUCTURE OF HYPEREUTECTOID STEEL BY WARM DEFORMATION OF MARTENSITE. Acta Metall Sin, 2009, 45(6): 697-703.

Download:  PDF(2838KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The continuous network of brittle proeutectoid carbide will formed along the grain boundaries when cooled slowly from austenite in hypereutectoid steels. Steels with such high--carbon content have been neglected in industry because of they are inherently brittle. By properly processed, such as hot and warm working (HWW), isothermal warm working (IWW), divorced eutectoid transformation (DET) and divorced eutectoid transformation with associated deformation (DETWAD), the steels will exhibit ultrafine microduplex structure with fine spheroidized cementite (θ) particles dispersed in fine--grained and equiaxed ferrite (α) matrix (grain size is less than 1 μm). This microduplex structure shows superplasticity at elevated temperature and exhibits better mechanical properties at room temperature. However, these processes are relatively complicated and should break the proeutectoid cementiets firstly. By warm deformation of martensite, a simple process and the ultrafined microstructure can be obtained easily. In the present work, the effects of Al on the microstructural ultra--refinement and mechanical properties of hypereutectoid steel during warm deformation of martensite as well as tempering of martensite were investigated by uniaxial hot compression simulation experiment. The results indicate that the warm deformation accelerates the martensite decomposition compared to tempering, leading to the formation of ultrafine (α+θ) microduplex structures. The microstructure evolution of martensite during warm deformation involves the precipitation and coarsen of cementite particles, and the dynamic recovery and dynamic recrystallization of ferrite, while tempering of martensite, the precipitation and coarsen of cementite particles, static recovery and grain growth of ferrite occurred, but no recrystallization of ferrite occurred. With the addition of Al, the decomposition of martensite is impeded during warm deformation and tempering, the microduplex structure is refined, and its strength is improved, while the elongation is not decreased.

Key words:  hypereutectoid steel      martensite      warm deformation      ultrafine microstrcture      mechanical property      Al addition     
Received:  18 November 2008     
ZTFLH: 

TG142.1

 
Fund: 

Supported by Doctoral Fund of Ministry of Education of China (No. 20050008017)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/697

[1] Sherby O D. ISIJ Int, 1999; 39: 637
[2] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[3] Walser B, Sherby O D. Metall Trans, 1979; 10A: 1461
[4] Wadsworth J, Lin J H, Sherby O D. Met Technol, 1981; 8:190
[5] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[6] Carsi M, Vicente A F, Sherby O D, Penalba F, Ruano O A. Mater Sci Forum, 2007; 539–543: 4826
[7] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall , 1984; 18: 799
[8] Taleff E M, Bramfitt B L, Syn C K, Lesuer D R, Wadsworth J, Sherby O D. Mater Charact, 2001; 46: 11
[9] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 2005; 45: 392
[10] Fu W, Furuhara T, Maki T. ISIJ Int, 2004; 44: 171
[11] Tagashira S, Sakai K, Furuhara T, Maki T. ISIJ Int, 2000;40: 1149
[12] Chen W, Li L F, Yang W Y, Sun Z Q. Chin J Mater Res, 2008; 22: 374
(陈 伟, 李龙飞, 杨王玥 , 孙祖庆. 材料研究学报, 2008; 22: 374)
[13] Chen W,, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin,2008; 44: 1069
(陈伟, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2008; 44: 1069)
[14] Syn C K, Lesuer D R, Sherby O D. Metall Mater Trans,1994; 25A: 1481
[15] Lesuer D R, Syn C K, Whittenberger J D, Sherby O D. Metall Mater Trans, 1999; 30A: 1559
[16] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 40: 675
[17] Ueji R, Tsuji N, Minamino Y, Koizumi Y. Acta Mater, 2002; 50: 4177
[18] Xu S L, Li L F, Yang W Y, Sun Z Q. J Univ Sci Technol Beijing, 2007; 29: 901
(徐仕龙, 李龙飞, 杨王玥, 孙祖庆. 北京科技大学学报, 2007; 29: 901)
[19] Zhou J F, Jing T F, Gao Y W, Wang W, Zhao X, Song X Y. J Iron Steel Res, 2007; 19: 45
(周继锋, 荆天辅, 高聿为, 王威, 赵新, 宋新宇. 钢铁研究学报, 2007; 19: 45)
[20] Sun Z Q, Yang W Y, Qi J J, Hu A M. Mater Sci Eng, 2002; A334: 201
[21] Furuhara T, Kobayashi K, Maki T. ISIJ Int, 2004; 44: 1937
[22] Song R, Ponge D, Raabe D. Acta Mater, 2005; 52: 1075
[23] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005; 53: 845
[24] Furuhara T, Sato E, Mizoguchi T, Furimoto S, Maki T. Mater Trans, 2002; 43: 2455
[25] Harrigan M J, Sherby O D. Mater Sci Eng, 1971; 7: 177
[26] Zhou R F, YangWY, Sun Z Q, He J P. J Univ Sci Technol Beijing, 2004; 26: 512
(周荣锋, 杨王玥, 孙祖庆, 何建平. 北京科技大学学报, 2004; 26: 512)
[27] Leslie W C, Rauch G C. Metall Trans, 1978; 9A: 343
[28] Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2003; 39:419
(李龙飞, 杨王玥, 孙祖庆. 金属学报, 2003; 39: 419)
[29] Frommeyer G, Jimenez J A. Metall Mater Trans, 2005;36A: 295
[30] Wang B Q, Song X Y, Peng H F. Mater Des, 2007; 28:562
[31] Zuidema B K, Subramaanyam, Leslie W C. Metall Trans,1987; 18A: 1629

[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!