Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (6): 662-666     DOI:
Research Articles Current Issue | Archive | Adv Search |
TiN/Ti MULTILAYER FILMS SYNTHESIZED BY MID-FREQUENCY DUAL-MAGNETRON SPUTTERING
YU Xiang; WANG Chengbiao;LIU Yang; YU Deyang
中国地质大学(北京)工程技术学院
Cite this article: 

YU Xiang; WANG Chengbiao; LIU Yang; YU Deyang. TiN/Ti MULTILAYER FILMS SYNTHESIZED BY MID-FREQUENCY DUAL-MAGNETRON SPUTTERING. Acta Metall Sin, 2006, 42(6): 662-666 .

Download:  PDF(255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A series of Ti-based multilayered films were deposited using a new mid-frequency dual-magnetron sputtering system. The influences of Ti buffer layer on the film hardness and adhesion were investigated. The forming mechanism of macro-particles and caves was analyzed, and then the orthogonal design and variance analysis were used to discuss the influences of the target currents, the pressures of working gases and the substrate bias voltages on the densities of the surface defects, and the process parameters were optimized accordingly. The results show that the target current has the most important influence on the defect density, and the effects of the pressures and the substrate bias voltages decrease in turn; in the condition of the target current of 20 A, the gases pressure of 0.31 Pa, the bias voltages in a range of -160 - -300 V and the thickness of Ti buffer layers, x=0.12 um, the high-quality TiN/Ti multilayer film is obtained, whose Vickers microhardness HV 0.2 N is 2250, film-substrate adhesion (critical load L c) is 48 N, and surface defect density is 58 mm -2.
Key words:  TiN/Ti multilayer film      magnetron sputtering      mechanical property      
Received:  23 September 2005     
ZTFLH:  O484.5  
  TG111.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I6/662

[1] Schonjahn C, Bamford M, Donohue L A. Surf Coat Tech- nol, 2000; 125: 66
[2] Wu S K, Lin H C, Liu P L. Surf Coat Technol, 2000:124: 97
[3] Koski K, Holsa J, Juliet P. Surf Coat Technol,1999 115: 163
[4] Shieu F S, Cheng L H, Shiao M H. Surf Coat Technol, 2000; 131: 158
[5] Kim G S, Lee S Y, Hahn J H. Surf Coat Technol. 2003; 171: 83
[6] Lina S S, Huang .JL, Sajgalik P. Surf Coat Technol, 2005; 190: 39
[7] Shieu F S, Cheng L H, Shiao M H. Surf Coat Technol, 2000; 131: 158
[8] Alfonso D C, Elisabeth R P, Belarmino S G, Yulieth C A. Surf Coat Technol, 2005; 190: 83
[9] Posadowski W M. Thin Solid Films, 2001; 392: 201
[10] Faber J, Hotzsch G, Metzner C. Vacuum, 2002; 64: 55
[11] Shiao M-H, Shieu F-S. Thin Solid Films, 2001; :386: 27
[12] Koski K, Holsa J, Juliet P. Surf Coat Technol, 1999; 115: 163
[13] Li Zh Y, Zhu W B, Zhang Y. Surf Coat Technol, 2000; 131: 158
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!