Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 668-678    DOI: 10.11900/0412.1961.2022.00183
Current Issue | Archive | Adv Search |
Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating
HUANG Ding1, QIAO Yanxin1(), YANG Lanlan1, WANG Jinlong2, CHEN Minghui2, ZHU Shenglong3, WANG Fuhui2
1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating. Acta Metall Sin, 2023, 59(5): 668-678.

Download:  HTML  PDF(3093KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In addition to changing the surface roughness of the superalloy, the substrate surface treatment can also modify the microstructure of the surface, which affects the high-temperature oxidation behavior of the high-temperature protective coating. However, there are few reports about the effect of superalloy surface treatment on the oxidation behavior of nanocrystalline coatings. In this work, nanocrystalline coatings were sputtered on the nickel-based single crystal superalloy after two different surface treatments of polishing and shot peening, and their cyclic oxidation behavior at 1100oC was investigated. The phase composition and microstructure of nanocrystalline coatings were characterized by SEM, XRD, and EDS. The results indicated that the cyclic oxidation kinetics of both nanocrystalline coatings at 1100oC were similar. A dense oxide film could be formed on the surface of nanocrystalline coatings, showing excellent oxidation resistance. However, the microstructure evolution of the interface between the nanocrystalline coating and shot-peened superalloy substrate differed from that between the nanocrystalline coating and polished superalloy substrate. The sustained formation of the γ′ phase in the nanocrystalline coating near the polished substrate/coating interface was observed during high-temperature oxidation. This phenomenon was not found at the nanocrystalline coating near the shot peened substrate/coating interface, while the continuous growth of the γ' phase was observed at the substrate.

Key words:  shot peening      nanocrystalline coating      cyclic oxidation      magnetron sputtering     
Received:  19 April 2022     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51801021);National Natural Science Foundation of China(52001142);Ministry of Industry and Information Technology Project(MJ-2017-J-99);Fundamental Research Funds for the Central Universities(N2102015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00183     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/668

Fig.1  Cross-sectional (a, c) and surface (b, d) morphologies of the as-sputtered nanocrystalline coatings deposited on the polished (a, b) and shot peened (c, d) N5 single crystal superalloys
Fig.2  Cyclic oxidation kinetics of nanocrystalline coatings at 1100oC (a) and lg(ΔM)-lgt fitting cu-rves (b) (ΔM—mass gain per unit area, t—oxidation time)
Fig.3  XRD spectra of the nanocrystalline coatings after cycle oxidation with different cycles at 1100oC
Fig.4  Cross-sectional (a, c) and surface (b, d) morphologies of nanocrystalline coatings deposited on polished (a, b) and shot peened (c, d) superalloys after 100 cyc at 1100oC
Fig.5  Microstructures (left) and EDS line scanning results along the dash lines (right) of the interface between the polished substrate and nanocrystalline coating after 0 (a), 5 (b), 20 (c), and 100 (d) cyc oxidation at 1100oC
Fig.6  Microstructures (left) and EDS line scanning results along the dash lines (right) of the interface between the shot peened substrate and nanocrystalline coating after 0 (a), 5 (b), 20 (c), and 100 (d) cyc oxidation at 1100oC
PointAlCrCoMoTaWNi
16.73.65.31.012.26.0Bal.
24.010.49.72.73.97.0Bal.
37.03.05.00.712.95.7Bal.
44.010.310.02.24.26.9Bal.
Table 1  EDS results of points 1-4 in Figs.5d and 6d
Fig.7  Cross-sectional microstructures of nanocrystalline coatings deposited on polished (a, c) and shot peened (b, d) superalloys after 20 (a, b) and 100 (c, d) cyc at 1100oC
SuperalloyCycle number / cycZonePointContent
Atomic fraction / %Mass fraction / %
Polishing20γ + γ'19.04.1
γ29.64.3
100γ + γ'39.04.0
γ49.84.4
Shot peening20γ + γ'58.94.0
γ69.04.0
100γ + γ'78.94.0
γ89.04.0
Table 2  EDS results of Al element at points 1-8 in Fig.7
1 Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bull., 2012, 37: 891
2 Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. Int. Mater. Rev, 2013, 58: 315
doi: 10.1179/1743280413Y.0000000019
3 Long H B, Wei H, Liu Y N, et al. Effect of lattice misfit on the evolution of the dislocation structure in Ni-based single crystal superalloys during thermal exposure[J]. Acta Mater., 2016, 120: 95
doi: 10.1016/j.actamat.2016.08.035
4 Spathara D, Sergeev D, Kobertz D, et al. Thermodynamic study of single crystal, Ni-based superalloys in the γ + γ′ two-phase region using Knudsen Effusion Mass Spectrometry, DSC and SEM[J]. J. Alloys Compd., 2021, 870: 159295
doi: 10.1016/j.jallcom.2021.159295
5 Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development of aluminide coated superalloys[J]. Mater. Sci. Eng., 2005, A396: 231
6 Pint B A, Haynes J A, Besmann T M. Effect of Hf and Y alloy additions on aluminide coating performance[J]. Surf. Coat. Technol., 2010, 204: 3287
doi: 10.1016/j.surfcoat.2010.03.040
7 Pillai R, Wessel E, Nowak W J, et al. Predicting effect of base alloy composition on oxidation- and interdiffusion-induced degradation of an MCrAlY coating[J]. JOM, 2018, 70: 1520
doi: 10.1007/s11837-018-2950-9
8 Song P, Subanovic M, Toscano J, et al. Effect of atmosphere composition on the oxidation behavior of MCrAlY coatings[J]. Mater. Corros., 2011, 62: 699
doi: 10.1002/maco.201005851
9 Hesnawi A, Li H F, Zhou Z H, et al. Effect of surface condition during pre-oxidation treatment on isothermal oxidation behavior of MCrAlY bond coat prepared by EB-PVD[J]. Surf. Coat. Technol., 2007, 201: 6793
doi: 10.1016/j.surfcoat.2006.09.076
10 Wu M Y, Chen M H, Zhu S L, et al. Effect of sand blasting on oxidation behavior of K38G superalloy at 1000oC[J]. Corros. Sci., 2015, 92: 256
doi: 10.1016/j.corsci.2014.12.015
11 Ostwald C, Grabke H J. Initial oxidation and chromium diffusion. I. Effects of surface working on 9-20% Cr steels[J]. Corros. Sci., 2004, 46: 1113
doi: 10.1016/j.corsci.2003.09.004
12 Kawaura H, Kawahara H, Nishino K, et al. New surface treatment using shot blast for improving oxidation resistance of TiAl-base alloys[J]. Mater. Sci. Eng., 2002, A329-331: 589
13 Wang H, Liu Y B, Ning X J, et al. Oxidation of Ni-based single crystal after grit-blasting during exposure at high temperature[J]. Mater. High Temp., 2017, 34: 215
doi: 10.1080/09603409.2017.1281869
14 Karaoglanli A C, Doleker K M, Demirel B, et al. Effect of shot peening on the oxidation behavior of thermal barrier coatings[J]. Appl. Surf. Sci., 2015, 354: 314
doi: 10.1016/j.apsusc.2015.06.113
15 Tan L, Ren X, Sridharan K, et al. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation[J]. Corros. Sci., 2008, 50: 2040
doi: 10.1016/j.corsci.2008.04.008
16 Ni L Y, Wu Z L, Zhou C G. Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 173
doi: 10.1016/S1002-0071(12)60052-5
17 Kane K A, Lance M J, Sweet M, et al. The effect of bond coating surface modification on the performance of atmospheric plasma spray thermal barrier coatings[J]. Surf. Coat. Technol., 2019, 378: 125042
doi: 10.1016/j.surfcoat.2019.125042
18 Li Z M, Qian S Q, Wang W. Influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings[J]. Appl. Surf. Sci., 2011, 257: 10414
doi: 10.1016/j.apsusc.2011.06.120
19 Wang L, Jiang W G, Li X W, et al. Effect of surface roughness on the oxidation behavior of a directionally solidified Ni-based superalloy at 1100oC[J]. Acta. Metall. Sin. (Engl. Lett.), 2015, 28: 381
doi: 10.1007/s40195-015-0211-2
20 Gil A, Shemet V, Vassen R, et al. Effect of surface condition on the oxidation behaviour of MCrAlY coatings[J]. Surf. Coat. Technol., 2006, 201: 3824
doi: 10.1016/j.surfcoat.2006.07.252
21 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review[J]. Corros. Commun., 2021, 1: 58
22 Zhao S, Liu C H, Yang J J, et al. Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding[J]. Surf. Coat. Technol., 2021, 417: 127228
doi: 10.1016/j.surfcoat.2021.127228
23 Li Z, Liu C H, Chen Q S, et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering[J]. Corros. Sci., 2021, 191: 109755
doi: 10.1016/j.corsci.2021.109755
24 Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy[J]. Corros. Sci., 2015, 98: 530
doi: 10.1016/j.corsci.2015.05.062
25 Yeom H, Maier B, Mariani R, et al. Magnetron sputter deposition of zirconium-silicide coating for mitigating high temperature oxidation of zirconium-alloy[J]. Surf. Coat. Technol., 2017, 316: 30
doi: 10.1016/j.surfcoat.2017.03.018
26 Yang L L, Zhou Z H, Yang R Z, et al. Effect of Al and Cr on the oxidation behavior of nanocrystalline coatings at 1050oC[J]. Corros. Sci., 2022, 200: 110191
doi: 10.1016/j.corsci.2022.110191
27 Yang L L, Chen M H, Cheng Y X, et al. Effects of surface finish of single crystal superalloy substrate on cyclic thermal oxidation of its nanocrystalline coating[J]. Corros. Sci., 2016, 111: 313
doi: 10.1016/j.corsci.2016.04.023
28 Chen M H, Shen M L, Zhu S L, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000oC[J]. Corros. Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
29 Wang J L, Chen M H, Yang L L, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Appl. Surf. Sci., 2016, 366: 245
doi: 10.1016/j.apsusc.2016.01.088
30 Yoon K E, Isheim D, Noebe R D, et al. Nanoscale studies of the chemistry of a René N6 superalloy[J]. Interf. Sci., 2001, 9: 249
doi: 10.1023/A:1015158728191
31 Zietara M, Neumeier S, Göken M, et al. Characterization of γ and γ′ phases in 2nd and 4th generation single crystal nickel-base superalloys[J]. Met. Mater. Int., 2017, 23: 126
doi: 10.1007/s12540-017-6109-y
32 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
33 Picha R, Brož P, Buršı́k J. Phase equilibria in the Ni-Al-Cr-Ti system at 1000 and 1100oC[J]. J. Alloys Compd., 2004, 378: 75
doi: 10.1016/j.jallcom.2003.10.072
34 Yang L L, Wang J L, Yang R Z, et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature[J]. Corros. Sci, 2021, 180: 109182
doi: 10.1016/j.corsci.2020.109182
35 Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy[J]. Mater. Sci. Eng., 1998, A250: 88
36 He C, Liu L, Huang T W, et al. The effects of misfit and diffusivity on γʹ rafting in Re and Ru containing nickel based single crystal superalloys—Details in thermodynamics and dynamics[J]. Vacuum, 2021, 183: 109839
doi: 10.1016/j.vacuum.2020.109839
37 Buchanan D J, John R, Brockman R A. Relaxation of shot-peened residual stresses under creep loading[J]. J. Eng. Mater. Technol., 2009, 131: 031008
38 Mathur H N, Panwisawas C, Jones C N, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112
doi: 10.1016/j.actamat.2017.02.058
39 Durham R N, Gleeson B, Young D J. Factors affecting chromium carbide precipitate dissolution during alloy oxidation[J]. Oxid. Met., 1998, 50: 139
doi: 10.1023/A:1018880019395
[1] LIU Guanxi, HUANG Guanghong, LUO Xuekun, SHEN Zaoyu, HE Limin, LI Jianping, MU Rende. The Influence of Surface Shot Peening on the Isothermal Oxidation Behavior of NiCrAlYSi Coating[J]. 金属学报, 2021, 57(5): 684-692.
[2] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[3] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[4] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[5] Houpu WU,Xiubo TIAN,Xinyu ZHANG,Chunzhi GONG. Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate[J]. 金属学报, 2019, 55(3): 299-307.
[6] Shasha YANG,Feng YANG,Minghui CHEN,Yunsong NIU,Shenglong ZHU,Fuhui WANG. Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering[J]. 金属学报, 2019, 55(3): 308-316.
[7] Huiying SHI, Chao YANG, Bailing JIANG, Bei HUANG, Di WANG. Influences of Target Peak Current Density on the Microstructure and Mechanical Properties of TiN Films Deposited by Dual Pulsed Power Magnetron Sputtering[J]. 金属学报, 2018, 54(6): 927-934.
[8] Yukui GAO. INFLUENCE OF DIFFERENT SURFACE MODIFICA-TION TREATMENTS ON SURFACE INTEGRITY AND FATIGUE PERFORMANCE OF TC4 TITANIUM ALLOY[J]. 金属学报, 2016, 52(8): 915-923.
[9] Baiyang LOU,Yuxing WANG. EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS[J]. 金属学报, 2016, 52(6): 727-733.
[10] Xudong SUI,Guojian LI,Qiang WANG,Xuesi QIN,Xiangkui ZHOU,Kai WANG,Lijian ZUO. PREPARATION OF Ti1-xAlxN COATING IN CUTTING TITANIUM ALLOY AND ITS CUTTING PERFORMANCE[J]. 金属学报, 2016, 52(6): 741-746.
[11] Xin PENG, Sumeng JIANG, Xudong SUN, Jun GONG, Chao SUN. CYCLIC OXIDATION AND HOT CORROSION BEHAVIORS OF A GRADIENT NiCoCrAlYSi COATING[J]. 金属学报, 2016, 52(5): 625-631.
[12] QI Dongli, LEI Hao, FAN Di, PEI Zhiliang, GONG Jun, SUN Chao. EFFECT OF Mo CONTENT ON THE MICROSTRUC-TURE AND PROPERTIES OF CrMoN COMPOSITE COATINGS[J]. 金属学报, 2015, 51(3): 371-377.
[13] Chao YANG,Bailing JIANG,Lin FENG,Juan HAO. EFFECT OF DISCHARGE CHARACTERISTICS OF TARGET ON IONIZATION AND DEPOSITION OF DEPOSITED PARTICLES[J]. 金属学报, 2015, 51(12): 1523-1530.
[14] Wenfang CUI,Dong CAO,Gaowu QIN. MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING[J]. 金属学报, 2015, 51(12): 1531-1537.
[15] Yutian MA,Junbiao LIU,Rongling HUO,Li HAN,Geng NIU. RESEARCH ON THE PREPARATION AND PERFOR-MANCE OF TUNGSTEN-ALUMINUM TRANSMIS-SION TARGET FOR MICRO-COMPUTED TOMOGRAPHY BY MAGNETRONSPUTTERING[J]. 金属学报, 2015, 51(11): 1416-1424.
No Suggested Reading articles found!