Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 861-866    DOI: 10.3724/SP.J.1037.2012.00198
论文 Current Issue | Archive | Adv Search |
Ti-BASED AMORPHOUS COMPOSITES WITH QUANTITATIVELY CONTROLLED IN--SITU FORMATION OF DENDRITES
TANG Mingqiang, ZHU Zhengwang, FU Huameng, WANG Aimin, LI Hong, ZHANG Hongwei, MA Guofeng, ZHANG Haifeng, HU Zhuangqi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

TANG Mingqiang ZHU Zhengwang FU Huameng WANG Aimin LI Hong ZHANG Hongwei MA Guofeng ZHANG Haifeng HU Zhuangqi. Ti-BASED AMORPHOUS COMPOSITES WITH QUANTITATIVELY CONTROLLED IN--SITU FORMATION OF DENDRITES. Acta Metall Sin, 2012, 48(7): 861-866.

Download:  PDF(2831KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A series of  (Ti32.8Zr30.2Ni5.3Cu9Be22.7)100-x (Ti61.5Zr36.4Cu2.1)x (x=10-95) bulk amorphous composites with quantitatively controlled in-situ formation of bcc-dendrites were prepared. The microstructures were analyzed by SEM, XRD and TEM. Thermal behaviors were examined using DSC. The results show that the size and volume fraction of dendrites depend on x in the composites. With increasing x, the volume fraction of dendrites rises monotonically from 20% to 90%. The microstructural transition between the matrix and the dendrites is smooth and successive with no phases observed at the interface. Compression tests show the size and volume fraction of dendrites largely influence the mechanical properties of composites. When the volume fraction is larger than the critical value (approximately 30% in the present work), the plasticity of composites cannot be improved. When the volume fraction is over the critical value, the higher the volume fraction of dendrites, the larger the plastic strain, the stronger the work hardening capacity. It implies that the properties of composite can be mediated by the tunable volume fraction of dendrites. These findings are significant to develop the controllable microstructure and performance materials. When x=90, the plastic strain and the compressive strength of the composites reach 14.4% and 1917 MPa, respectively.
Key words:  Ti-based amorphous alloy      dendrite      in-situ composite      mechanical property     
Received:  13 April 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00198     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/861

[1] Wang WH, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45

[2] Yavari A R, Lewandowski J J, Eckert J. MRS Bull, 2007; 32: 635

[3] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067

[4] Johnson W L. MRS Bull, 1999; 24: 42

[5] Conner R D, Dandliker R B, Johnson W L. Acta Mater, 1998; 46: 6089

[6] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901

[7] Eckert J, Kuhn U, Mattern N, He G, Gebert A. Intermetallics, 2002; 10: 1183

[8] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020

[9] Qiu K Q, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallics, 2002; 10: 1283

[10] Fu H M, Wang H, Zhang H F, Hu Z Q. Scr Mater, 2006; 54: 1961

[11] Zhang H F, Wang A M, Li H, Sun W S, Ding B Z, Hu Z Q, Cai H N, Wang L, Li W. J Mater Res, 2006; 21: 1351

[12] Zhu Z W, Zhang H F, Wang H, Ding B, Hu Z Q, Huang H. J Mater Res, 2009; 24: 3109

[13] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278

[14] Deng S T, Diao H, Chen Y L, Yan C, Zhang H F, Wang A M, Hu Z Q. Scr Mater, 2011; 64: 85

[15] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085

[16] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W L. PNAS, 2008; 105: 20136

[17] Wu Y, Xiao Y, Chen G L, Liu C T, Lu Z P. Adv Mater, 2010; 22: 2770

[18] Qiao J W, Wang S, Zhang Y, Liaw P K, Chen G L. Appl Phys Lett, 2009; 94: 151905

[19] Mu J, Zhu Z W, Zhang H F, Hu Z Q, Wang Y D, Ren Y. Acta Mater, 2010; 58: 6267

[20] Tang M Q, Zhang H F, Zhu Z W, Fu H M, Wang A M, Li H, Hu Z Q. J Mater Sci Technol, 2010; 26: 481

[21] Qiao J W, Sun A C, Huang E W, Zhang Y, Liaw P K, Chuang C P. Acta Mater, 2011; 59: 4126
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!