Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 853-860    DOI: 10.3724/SP.J.1037.2011.00641
论文 Current Issue | Archive | Adv Search |
PREDICTED CONSTITUTIVE MODELING OF HOT DEFORMATION FOR AZ31 MAGNESIUM ALLOY
SUN Chaoyang, LUAN Jingdong, LIU Geng, LI Rui, ZHANG Qingdong
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

SUN Chaoyang LUAN Jingdong LIU Geng LI Rui ZHANG Qingdong. PREDICTED CONSTITUTIVE MODELING OF HOT DEFORMATION FOR AZ31 MAGNESIUM ALLOY. Acta Metall Sin, 2012, 48(7): 853-860.

Download:  PDF(1593KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The uniaxial compression tests of AZ31 magnesium alloy at different strain rates of 0.01-10 s-1 and different deformation temperatures of 523-723 K were performed by using Gleeble-1500 simulator with a maximum strain of 0.916. The influences of deformation temperature and strain rate on the flow stress were investigated. The fine microstructure is attributed to dynamic recrystallization during compression process at 523 K. The stretched grains of dynamic recrystallization and growth up along radial direction were founded in microscopic observation at 723 K. Considering plasticity deformation and friction induced temperature rise, the flow stress was corrected at high strain rate by using temperature compensation. The peak flow stress and unified constitutive model were established based on hyperbolic sine model. Strain sensitivity of flow stress was studied to describe the coupling of materials parameters on the strain, and then the relationship between deformation temperature, strain rate and strain during hot deformation was obtained. Comparing with experimental results, the correlation coefficient and average relative error of predicted and measured values are 0.976 and 5.07\% respectively, it is proved that the model reflects the real deformation feature of the AZ31 magnesium alloy.
Key words:  AZ31 magnesium alloy      hot-compressive deformation      constitutive relationship      flow stress     
Received:  12 October 2011     
ZTFLH: 

TG146.4

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00641     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/853

[1] Liu Q. Acta Metall Sin, 2010; 46: 1458

(刘庆. 金属学报, 2010; 46: 1458)

[2] Xiao P, Liu T M, Jiang D. J Chongqing Univ (Nat Sci Ed), 2006; 29(11): 81

(肖 盼, 刘天模, 姜丹.重庆大学学报(自然科学版), 2006; 29(11): 81)

[3] Guo Q, Zhang H, Chen Z H, Yan H G, Xia W J, Fu D F. Nat Sci J Xiangtan Univ, 2004; 26: 108

(郭强, 张辉, 陈振华, 严红革, 夏伟军, 傅定发.湘潭大学自然科学学报, 2004; 26: 108)

[4] Carl M, Korzekw A C, Cerreta E, Lopez F. J Miner Met Mater Soc, 2004; 56(11): 31

[5] Takuda H. J Mater Process Technol, 1998; 80/81: 513

[6] Galiyev A, Kaibyshev R, Sakai T. Mater Sci Forum, 2003; 419–422: 419

[7] Barnett M R. J Light Met, 2001; 1: 167

[8] Fan Y G, Wang L Y, Huang G S, Huang G J. J Chongqing Univ (Nat Sci Ed), 2003; 26(2): 9

(范永革, 汪凌云, 黄光胜, 黄光杰.重庆大学学报(自然科学版), 2003; 6(2): 9)

[9] Wang Z T, Zhang S H, Qi G X, Wang F, Li Y J. Chin J Nonferrous Met, 2008; 18: 1977

(王忠堂, 张士宏, 齐广霞, 王芳, 李艳娟.中国有色金属学报, 2008; 18: 1977)

[10] Huang G S, Wang L Y, Huang G J, Lu Z W, Song M J. Met Form Technol, 2004; 22(2): 42

(黄光胜, 汪凌云, 黄光杰, 卢志文, 宋美娟. 金属成形工艺, 2004; 22(2): 42)

[11] Guo Q, Yan H G, Chen Z H, Zhang H. Chin J Nonferrous Met, 2005; 15: 900

(郭 强, 严红革, 陈振华, 张辉. 中国有色金属学报, 2005; 15: 900)

[12] Zhang X H, Cui Z S, Ruan X Y. J Shanghai Jiaotong Univ, 2003; 37: 1874

(张先宏, 崔振山, 阮雪榆. 上海交通大学学报, 2003; 37: 1874)

[13] Yu K, Shi T, Wang R C, Li W X, Wang X Y, Cai Z Y. J Cent South Univ (Sci Technol), 2008; 39: 216

(余琨, 史禔, 王日初, 黎文献, 王晓艳, 蔡志勇. 中南大学学报(自然科学版), 2008; 39: 216)

[14] Sun C Y, Liu J R, Li R, Zhang Q D, Dong J X. Real Met, 2011; 30: 81

[15] Luan N, Li L X, Li G Y, Zhong Z H. Chin J Nonferrous Met, 2007; 17: 1678

(栾娜, 李落星, 李光耀, 钟志华. 中国有色金属学报, 2007; 17: 1678)

[16] Luo Z J, Yang Q, Ji W H. Chin J Nonferrous Met, 2000; 10: 804

(罗子健, 杨旗, 姬婉华. 中国有色金属学报, 2000; 10: 804)

[17] Zhang W H, Zhang S H. Acta Metall Sin, 2006; 42: 1036

(张伟红, 张士宏. 金属学报, 2006; 42: 1036)

[18] Wang Z X, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 1378

(王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)

[19] Sellars C M, McTegart W J. Acta Metall, 1966; 14: 1136

[20] Mcqueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43

[21] Gronostajski Z J. J Mater Process Technol, 1998; 78: 84

[22] Whittenberger J D. Mater Sci Eng, 1986; 77: 103

[23] Zener C, Hollomon H. J Appl Phys, 1944; 15: 22

[24] Sun C Y, Liu J R, Li R, Zhang Q D. Acta Metall Sin, 2011; 47: 191

(孙朝阳, 刘金榕, 李瑞, 张清东. 金属学报, 2011; 47: 191)

[25] Ismael A M, Ahmed H, Johannes R. Mater Sci Eng, 2009; A504: 40
[1] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[2] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[3] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[4] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
[5] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[6] Yaqiong YAN,Jinru LUO,Jishan ZHANG,Linzhong ZHUANG. Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling[J]. 金属学报, 2017, 53(1): 107-113.
[7] HUANG Hongtao, Godfrey Andrew, LIU Wei, FU Baoqin,LIU Qing. DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY DURING MULTIAXIAL COMPRESSION BY EBSD TRACKING[J]. 金属学报, 2013, 49(8): 932-938.
[8] WEI Hailian, LIU Guoquan, XIAO Xiang, ZHANG Minghe. APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL[J]. 金属学报, 2013, 49(6): 731-738.
[9] WEN Daosheng, ZONG Yingying, XU Wenchen, YANG Danmei, SHAN Debin. EFFECT OF 0.037%H ON HIGH TEMPERATURE DEFORMATION BEHAVIOR OF A CAST Ti-45Al-5Nb-0.8Mo-0.3Y ALLOY[J]. 金属学报, 2013, 49(11): 1428-1432.
[10] YU Hui KIM Youngmin YU Huashun YOU Bongsun MIN Guanghui. HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY[J]. 金属学报, 2012, 48(9): 1123-1131.
[11] HUANG Hongtao Godfrey Andrew LIU Wei TANG Ruihe LIU Qing. EFFECT OF SAMPLE ORIENTATION ON STATIC RECRYSTALLIZATION OF AZ31 MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(8): 915-921.
[12] PAN Xiaolin WANG Bo SUN Wenru TU Ganfeng GUO Shouren HU Zhuangqi. EFFECT OF HOMOGENIZATION TREATMENT ON THE HOT DEFORMATION OF GH742 ALLOY[J]. 金属学报, 2012, 48(11): 1403-1408.
[13] SUN Chaoyang LIU Jinrong LI Rui ZHANG Qingdong. CONSTITUTIVE MODELING FOR ELEVATED TEMPERATURE FLOW BEHAVIOR OF INCOLOY 800H SUPERALLOY[J]. 金属学报, 2011, 47(2): 191-196.
[14] . THE EFFECT OF {10¯11}–{10¯12} DOUBLE TWINNING ON THE MICROSTRUCTURE, TEXTURE AND MECHANICAL PROPERTIES OF AZ31 MAGNESIUM ALLOY SHEET DURING ROLLING DEFORMATION[J]. 金属学报, 2011, 47(12): 1567-1574.
[15] ZHANG Han BAI Bingzhe FANG Hongsheng. EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL[J]. 金属学报, 2009, 45(9): 1106-1110.
No Suggested Reading articles found!