Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 769-774    DOI: 10.3724/SP.J.1037.2012.00047
论文 Current Issue | Archive | Adv Search |
EFFECT OF NITROGEN ON MARTENSITIC TRANSFORMATION AND MECHANICAL PROPERTIES OF TWIP STEEL
HUANG Baoxu1, 2),  WANG Changzheng1),  WANG Xiaodong3),  RONG Yonghua3)
1) School of Materials Science and Engineering, Research Institute of Non--ferrous Metals, Liaocheng University, Liaocheng 252059
2) State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
3) School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
Cite this article: 

HUANG Baoxu WANG Changzheng WANG Xiaodong RONG Yonghua. EFFECT OF NITROGEN ON MARTENSITIC TRANSFORMATION AND MECHANICAL PROPERTIES OF TWIP STEEL. Acta Metall Sin, 2012, 48(7): 769-774.

Download:  PDF(1183KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Twinning induced plasticity (TWIP) steels show large elongation and high tensile strength,
exhibiting a super balance between strength and plasticity. Until now, the effects of Mn, Si and Al on stacking
fault energy (SFE) and phase transformation of TWIP steel had been investigated, but the effect of N on phase
transformation, especially martensitc transformation in TWIP steel has not been reported. In the present paper, the
mechanical properties of TWIP steel with the addition of N were tested. The phases were analyzed by XRD and
the microstructure was characterized by TEM. The average and local probabilities of stacking faults were also
calculated by using shifts of X-ray peak and electron diffraction spot, respectively. Compared with the
conventional TWIP steel, the results showed that at a lower SFE level, when fcc austensite or hcp martensite
transformed to bcc martensite, the largest interstice decreased from 0.1047 to 0.0725 nm. The lattice distortion
energy of bcc martensite was greatly enlarged by N, which situated in the interstices, leading to the suppression of the bcc martensitic transformation. As a result, the content of hcp martensite increased, causing the increase of
strength and decrease of plasticity. Besides, the results also showed that deformation increased stacking faults and
hcp or bcc martensitic transformation consumed a large number of stacking faults.
Key words:  TWIP steel      martensitic transformation      mechanical property     
Received:  06 February 2012     
ZTFLH: 

TG142

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00047     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/769

[1] Grassel O, Frommeyer G, Derder C, Hofmann H. J Phys IV France, 1997; 5: 383

[2] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 43: 438

[3] Vercammen S, Blanpain B, De Cooman B C, Wollants P. Acta Mater, 2004; 52: 2005

[4] Sato K, Ichinose M, Hirotsu Y, Inoue Y. ISIJ Int, 1989; 29: 868

[5] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1

[6] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plasticity, 2000; 16: 1391

[7] Schramm R E, Reed R P. Metall Trans, 1975; 6A: 1345

[8] Yakubtsov I A, Ariapour A, Perovic D D. Acta Mater, 1999; 47:1271

[9] Wan J F, Huang X, Chen S P, Hsu T Y (Xu Z Y). Mater Trans JIM, 2002; 43: 920

[10] Wan J F, Chen S P, Hsu T Y (Xu Z Y). Acta Metall Sin, 2000; 36: 679

(万见峰, 陈世朴, 徐祖耀. 金属学报, 2000; 36: 679)

[11] Huang B X, Wang X, Wang L, Rong Y. Metall Mater Trans, 2008; 39A: 717

[12] Huang B X. PhD Thesis, Shanghai Jiaotong University, 2007

(黄宝旭. 上海交通大学博士论文, 2007)

[13] Huang X, Wan J F, Chen S P, Hsu T Y (Xu Z Y). J Shanghai Jiaotong Univ, 2002; 36: 21

(黄幸, 万见峰, 陈世朴, 徐祖耀. 上海交通大学学报, 2002; 36: 21)

[14] Fan X. Metal X–ray Analysis. Beijing: China Machine Press, 1996: 36

(范雄. 金属X射线学. 北京: 机械工业出版社, 1996: 36)

[15] Zuo Y S, Chen W Z, Liang W. Modern Methods of Materials Testing. Beijing: Beijing University of Technology Press, 2000: 101

(左演声, 陈文哲, 梁伟. 材料现代分析方法. 北京: 北京工业大学出版社, 2000: 101)

[16] Rong Y H, He G, Guo Z H, Chen S P, Hsu T Y (Xu Z Y). J Mater Sci Technol, 2002; 18: 459

[17] Nishiyama Z, Kakinoki J, Kajiwara S. J Phys Soc Jpn, 1965; 20: 1192

[18] Kajiwara S. J Appl Phys, 1970; 9: 385

[19] Kajiwara S. J Phys Soc Jpn, 1967; 22: 795

[20] Wang X D, Huang B X, Rong Y H, Wang L. J Appl Phys, 2007; 101: 093511

[21] Pan J S, Tong J M, Tian M B. Fundamental of Materials. Beijing: Tsinghua University Press, 2002: 18

(潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 2002: 18)

[22] Yang F J. Atomic Physics. Beijing: Higher Education Press, 1985: 509

(杨福家. 原子物理学. 北京: 高等教育出版社, 1985: 509)

[23] Jiang B, Qi X, Yang S, Yang S, ZhouW, Hsu T Y (Xu Z Y). Acta Mater, 1998; 46: 501

[24] Warren B E. X-ray diffraction. Massachusett: Addison– Wesley, 1969: 275

[25] Hsu T Y (Xu Z Y). Acta Metall Sin, 1980; 16: 430

(徐祖耀. 金属学报, 1980; 16: 430)

[26] Hsu T Y (Xu Z Y). Martensitic Transformation and Martensite. Beijing: Science Press, 1999: 83

(徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1999: 83)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!