|
|
Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials |
MA Minjing1, QU Yinhu1, WANG Zhe1,2( ), WANG Jun1, DU Dan1 |
1.School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China 2.School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials. Acta Metall Sin, 2022, 58(10): 1305-1315.
|
Abstract Silver-copper oxide (Ag-CuO) materials are gaining more and more interest in the low voltage switches' field owing to their lower material transfer characteristics. However, with increasing arc erosion during the make-and-break operations, the CuO microstructure's dynamic evolution is complicated by the interaction of the convection-diffusion with the flow path. Therefore, tuning the microstructure to maximize the arc erosion properties of Ag-CuO contact materials using the dynamic model is crucial for their application in switches. In this study, three-dimensional models of Ag-CuO contacts were reconstructed by phase identification and microstructure analysis, using the microstructure characteristics of the Ag-45CuO (skeleton-restricted Ag-CuO) and Ag-20CuO (island-restricted Ag-CuO) contact materials. In parallel, the arc erosion dynamics of the microstructure evolution and skeleton reconstruction process were tracked and explored by employing computational fluid dynamics simulations. Experiment and simulation findings both indicate that the repetitive thermal effect can cause the formation of a cratered and smooth molten pool surface in island-restricted Ag-CuO and skeleton-restricted Ag-CuO, respectively. The local gap of skeleton-restricted Ag-CuO contact can function as the driving force to reconstruct the CuO skeleton, the newly formed CuO with an anisotropic microstructure, which can impede Ag's segregation and evaporation in the molten pool. The restructures of CuO are unimportant for the island-restricted Ag-CuO contact, and the continuous erosion impact of island CuO can render the contact invalid. Additionally, the CuO microstructure's effect on the mechanical properties of Ag-CuO contacts was examined by employing the local three-dimensional models, which were reconstructed using the visual recognition technology combined with the finite element approach. The findings exhibit that the skeleton CuO structure was less susceptible to stress and strain concentration at the molten pool surface compared with the island CuO structure, which can efficiently disperse the local effect force on the molten pool and can substantially enhance the Ag-CuO contact's erosion resistance.
|
Received: 18 November 2021
|
|
Fund: National Natural Science Foundation of China(52007137);National Natural Science Foundation of China(51607132);China Postdoctoral Science Foundation(2021M702566);Shaanxi Provincial Education Department Special project(20JK0661) |
About author: WANG Zhe, associate professor, Tel: (029)82330167, E-mail: cangture@xjtu.edu.cn
|
1 |
Lin Z J. Microstructure control and properties of Ag-SnO2 and Ag-Ni electrical contact materials [D]. Shenyang: Northeastern University, 2017
|
|
林智杰. Ag-SnO2和Ag-Ni电触头材料微结构调控与性能研究 [D]. 沈阳: 东北大学, 2017
|
2 |
He X Q, Fu H D, Zhang H T, et al. Machine learning aided rapid discovery of high performance silver alloy electrical contact materials [J]. Acta Metall. Sin., 2022, 58: 816
|
|
何兴群, 付华栋, 张洪涛 等. 机器学习辅助高性能银合金电接触材料的快速发现 [J]. 金属学报, 2022, 58: 816
doi: 10.11900/0412.1961.2021.00002
|
3 |
Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structures [J]. Acta Metall. Sin., 2021, 57: 1009
doi: 10.11900/0412.1961.2020.00387
|
|
韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57: 1009
|
4 |
Wu C P, Yi D Q, Wang W, et al. Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 185
doi: 10.1016/S1003-6326(16)64105-5
|
5 |
Wang B J, Saka N, Rabinowicz E. Static gap erosion of Ag-CdO electrodes [J]. IEEE. Trans. Compon., Hybrids, Manuf. Technol., 1991, 14: 374
|
6 |
Li G J, Ma Y Y, Zhang X L, et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2 (Cu, CuO) phases [J]. Appl. Surf. Sci., 2021, 543: 148812
doi: 10.1016/j.apsusc.2020.148812
|
7 |
Chen S Y, Wang J, Yuan Z, et al. Microstructure and arc erosion behaviors of Ag-CuO contact material prepared by selective laser melting [J]. J. Alloys Compd., 2021, 860: 158494
doi: 10.1016/j.jallcom.2020.158494
|
8 |
Han X L, Wang Z, Li G J, et al. Interfacial thermal stress relief in Ag-SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 [J]. Ceram. Int., 2022, 48: 16638
doi: 10.1016/j.ceramint.2022.02.209
|
9 |
Tao Q Y, Zhou X L, Zhou Y H, et al. Contact resistance and arc erosion morphology of AgCuO electrical contact material [J]. Rare Met. Mater. Eng., 2015, 44: 1219
|
|
陶麒鹦, 周晓龙, 周允红 等. Ag-CuO电触头材料的接触电阻及电弧侵蚀形貌分析 [J]. 稀有金属材料与工程, 2015, 44: 1219
|
10 |
Wang Z, Wang Y P. Impact of convection-diffusion and flow-path interactions on the dynamic evolution of microstructure: Arc erosion behavior of Ag-SnO2 contact materials [J]. J. Alloys Compd., 2019, 774: 1046
doi: 10.1016/j.jallcom.2018.10.022
|
11 |
Zhang J F, Sun X J, Tong H, et al. Mechanism investigation on effects of glass composition on Ag/Si contact for crystalline silicon solar cells [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 6778
doi: 10.1007/s10854-020-05211-8
|
12 |
Liu S T, Sun Q Y, Wang J B, et al. Exploration of the influence mechanism of La doping on the arc erosion resistance of Ag/SnO2 contact materials by a laser-simulated arc [J]. J. Mater. Eng. Perform., 2021, 30: 7577
doi: 10.1007/s11665-021-05966-z
|
13 |
Wu Q, Xu G F, Yuan M, et al. Influence of operation numbers on arc erosion of Ag/CuO electrical contact material [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2497
doi: 10.1007/s10854-019-02786-9
|
14 |
Zhou X, Cui X L, Chen M, et al. Evaporation erosion of contacts under static arc by gas dynamics and molten pool simulation [J]. IEEE. Trans. Plasma Sci., 2015, 43: 4149
|
15 |
Wang Y L, Liang S H, Li Z B. Experiment and simulation analysis of surface structure for CuW contact after arc erosion [J]. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1179/1743284714Y.0000000518
|
16 |
Wang J, Kang Y Q, Wang C. Microstructure and vacuum arc characteristics of CuO skeletal structure Ag-CuO contact materials [J]. J. Alloys Compd., 2016, 686: 702
doi: 10.1016/j.jallcom.2016.05.271
|
17 |
dos Santos J F, Staron P, Fischer T, et al. Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation [J]. Acta Mater., 2018, 148: 163
doi: 10.1016/j.actamat.2018.01.020
|
18 |
Wang Z, Wang X, Tong Y G, et al. Impact of structure and flow-path on in situ synthesis of AlN: Dynamic microstructural evolution of Al-AlN-Si materials [J]. Sci. China Mater., 2018, 61: 948
doi: 10.1007/s40843-017-9198-4
|
19 |
Duan C X, Yu Y, Yang P F, et al. Engineering new defects in MIL-100 (Fe) via a mixed-ligand approach to effect enhanced volatile organic compound adsorption capacity [J]. Ind. Eng. Chem. Res., 2020, 59: 774
doi: 10.1021/acs.iecr.9b05751
|
20 |
Wang Z, Zhang Y J, Jiang S, et al. The red deer antler: Bioinspired design of an Al-Si composite with a fenestrated network-particle structure [J]. J. Materiomics, 2020, 6: 545
doi: 10.1016/j.jmat.2020.04.002
|
21 |
Davis J R. Metals Handbook [M]. 2nd Ed., Materials Park, Ohio: ASM International, 1998: 415
|
22 |
Lyon R N. Liquid-Metals Handbook [M]. 2nd Ed., Washington: U. S. Government Printing Office, 1952: 38
|
23 |
Ayyar A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites [J]. Compos. Sci. Technol., 2006, 66: 1980
doi: 10.1016/j.compscitech.2006.01.007
|
24 |
Wu Y, Yang L H, Xu T F, et al. Combined effect of rarefaction and effective viscosity on micro-elasto-aerodynamic lubrication performance of gas microbearings [J]. Micromachines, 2019, 10: 657
doi: 10.3390/mi10100657
|
25 |
Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge [J]. Corros. Sci., 2019, 156: 147
doi: 10.1016/j.corsci.2019.05.005
|
26 |
Zhang X H, Zhang Y, Tian B H, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts [J]. Composites, 2019, 160B: 110
|
27 |
Li H Y, Li P, Wang J, et al. Microstructure and properties of AgSnO2 contact materials prepared by cold spray [J]. Rare Met. Mater. Eng., 2017, 46: 3858
|
|
李海燕, 李 鹏, 王 军 等. 冷喷涂AgSnO2触点涂层的组织与性能 [J]. 稀有金属材料与工程, 2017, 46: 3858
|
28 |
Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
|
|
丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|