Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (10): 1305-1315    DOI: 10.11900/0412.1961.2021.00498
Research paper Current Issue | Archive | Adv Search |
Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials
MA Minjing1, QU Yinhu1, WANG Zhe1,2(), WANG Jun1, DU Dan1
1.School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2.School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials. Acta Metall Sin, 2022, 58(10): 1305-1315.

Download:  HTML  PDF(3380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silver-copper oxide (Ag-CuO) materials are gaining more and more interest in the low voltage switches' field owing to their lower material transfer characteristics. However, with increasing arc erosion during the make-and-break operations, the CuO microstructure's dynamic evolution is complicated by the interaction of the convection-diffusion with the flow path. Therefore, tuning the microstructure to maximize the arc erosion properties of Ag-CuO contact materials using the dynamic model is crucial for their application in switches. In this study, three-dimensional models of Ag-CuO contacts were reconstructed by phase identification and microstructure analysis, using the microstructure characteristics of the Ag-45CuO (skeleton-restricted Ag-CuO) and Ag-20CuO (island-restricted Ag-CuO) contact materials. In parallel, the arc erosion dynamics of the microstructure evolution and skeleton reconstruction process were tracked and explored by employing computational fluid dynamics simulations. Experiment and simulation findings both indicate that the repetitive thermal effect can cause the formation of a cratered and smooth molten pool surface in island-restricted Ag-CuO and skeleton-restricted Ag-CuO, respectively. The local gap of skeleton-restricted Ag-CuO contact can function as the driving force to reconstruct the CuO skeleton, the newly formed CuO with an anisotropic microstructure, which can impede Ag's segregation and evaporation in the molten pool. The restructures of CuO are unimportant for the island-restricted Ag-CuO contact, and the continuous erosion impact of island CuO can render the contact invalid. Additionally, the CuO microstructure's effect on the mechanical properties of Ag-CuO contacts was examined by employing the local three-dimensional models, which were reconstructed using the visual recognition technology combined with the finite element approach. The findings exhibit that the skeleton CuO structure was less susceptible to stress and strain concentration at the molten pool surface compared with the island CuO structure, which can efficiently disperse the local effect force on the molten pool and can substantially enhance the Ag-CuO contact's erosion resistance.

Key words:  Ag-CuO contact material      erosion resistance      skeleton reconstruction      dynamic microstructure evolution      mechanical property     
Received:  18 November 2021     
ZTFLH:  TG146.3  
Fund: National Natural Science Foundation of China(52007137);National Natural Science Foundation of China(51607132);China Postdoctoral Science Foundation(2021M702566);Shaanxi Provincial Education Department Special project(20JK0661)
About author:  WANG Zhe, associate professor, Tel: (029)82330167, E-mail: cangture@xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00498     OR     https://www.ams.org.cn/EN/Y2022/V58/I10/1305

Fig.1  SEM images of Ag powders (a), CuO powders (b), and Ag-CuO powders (c), schematic of the hot-press sintering (d), 3D models of Ag-CuO materials (e), schematics of the experimental and simulated procedures of Ag-CuO materials (f) (FEM—finite element method, CFD—computational fluid dynamics)
MaterialxTm[21]ρ[21]c[21]μ[22]k[21]β[21]
%Kg·cm-3J·kg-1·K-1kg·m-1·s-1W·m-1·K-1K-1
Ag107.9123410.492831.1 × 10-34.29 × 10219.5 × 10-6
Ag (gas)107.9-1.1510121.8 × 10-52.55 × 10-23.7 × 10-3
CuO79.516006.32564-0.20 × 1020.93 × 10-6
Table 1  Species properties of models[21,22]
Fig.2  XRD spectra of Ag-20CuO and Ag-45CuO materials (a); SEM images of Ag-20CuO (b) and Ag-45CuO materials (e) (The typical CuO phases are highlighted in blue); EDS analyses of Ag-CuO material from the blue and gray boxes in Fig.2e (d); initial 3D models of Ag-20CuO (c) and Ag-45CuO materials (f)
Fig.3  Simulation and experimental results of surface erosion of island-restricted (a-c) and skeleton-restricted (d-f) Ag-CuO contacts
(a, d) 3D models of contacts at the instant of erosion process
(b, e) simulated surface morphologies of contacts after 1 × 104 make-and-break operations
(c, f) experimental surface morphologies of contacts after 1 × 104 make-and-break operations
Fig.4  Dynamic evolutions of CuO concentrations in the molten pool of island-restricted (a) and skeleton-restricted (b) Ag-CuO contacts at 1 × 102, 1 × 103, and 1 × 104 make-and-break operations
Fig.5  Dynamic evolutions of surface morphology (heights in the color maps) and Ag phase (3D models in the black boxes) of island-restricted (a-c) and skeleton-restricted (d-f) Ag-CuO contacts at 200 ms (a, d), 400 ms (b, e), and 600 ms (c, f), respectively, in 1 × 103 make-and-break operation
Fig.6  Vertical section images of experimental (a, c) and simulated (b, d) island-restricted (a, b) and skeleton-restricted (c, d) Ag-CuO contacts after 1 × 104 make-and-break operations (w(Ag)—mass fraction of Ag)
Fig.7  Phases identified diagrams and 3D morphologies of molten pool surface of island-restricted (a-c) and skeleton-restricted (d-f) Ag-CuO contacts
(a, d) identified SEM images (The typical areas are highlighted in blue)
(b, e) reverse reconstructed models (The typical areas are highlighted in yellow)
(c, f) local pretreatment models
Fig.8  Deformation distributions, stress distributions, and surface profiles of molten pool surfaces of island-restricted (a-c) and skeleton-restricted (d-f) Ag-CuO contacts
(a, d) deformation distributions of contacts
(b, e) stress distributions of contacts (The typical paths are marked by white-lines)
(c, f) surface profiles of contacts
Fig.9  Mechanical properties of molten pool surfaces of island-restricted and skeleton-restricted Ag-CuO contacts
(a, b) stress (a) and strain (b) of CuO phases with increasing contact time in Figs.8a and d
(c, d) stress (c) and strain (d) of white-line paths with changing position in Figs.8b and e
1 Lin Z J. Microstructure control and properties of Ag-SnO2 and Ag-Ni electrical contact materials [D]. Shenyang: Northeastern University, 2017
林智杰. Ag-SnO2和Ag-Ni电触头材料微结构调控与性能研究 [D]. 沈阳: 东北大学, 2017
2 He X Q, Fu H D, Zhang H T, et al. Machine learning aided rapid discovery of high performance silver alloy electrical contact materials [J]. Acta Metall. Sin., 2022, 58: 816
何兴群, 付华栋, 张洪涛 等. 机器学习辅助高性能银合金电接触材料的快速发现 [J]. 金属学报, 2022, 58: 816
doi: 10.11900/0412.1961.2021.00002
3 Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structures [J]. Acta Metall. Sin., 2021, 57: 1009
doi: 10.11900/0412.1961.2020.00387
韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57: 1009
4 Wu C P, Yi D Q, Wang W, et al. Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 185
doi: 10.1016/S1003-6326(16)64105-5
5 Wang B J, Saka N, Rabinowicz E. Static gap erosion of Ag-CdO electrodes [J]. IEEE. Trans. Compon., Hybrids, Manuf. Technol., 1991, 14: 374
6 Li G J, Ma Y Y, Zhang X L, et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2 (Cu, CuO) phases [J]. Appl. Surf. Sci., 2021, 543: 148812
doi: 10.1016/j.apsusc.2020.148812
7 Chen S Y, Wang J, Yuan Z, et al. Microstructure and arc erosion behaviors of Ag-CuO contact material prepared by selective laser melting [J]. J. Alloys Compd., 2021, 860: 158494
doi: 10.1016/j.jallcom.2020.158494
8 Han X L, Wang Z, Li G J, et al. Interfacial thermal stress relief in Ag-SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 [J]. Ceram. Int., 2022, 48: 16638
doi: 10.1016/j.ceramint.2022.02.209
9 Tao Q Y, Zhou X L, Zhou Y H, et al. Contact resistance and arc erosion morphology of AgCuO electrical contact material [J]. Rare Met. Mater. Eng., 2015, 44: 1219
陶麒鹦, 周晓龙, 周允红 等. Ag-CuO电触头材料的接触电阻及电弧侵蚀形貌分析 [J]. 稀有金属材料与工程, 2015, 44: 1219
10 Wang Z, Wang Y P. Impact of convection-diffusion and flow-path interactions on the dynamic evolution of microstructure: Arc erosion behavior of Ag-SnO2 contact materials [J]. J. Alloys Compd., 2019, 774: 1046
doi: 10.1016/j.jallcom.2018.10.022
11 Zhang J F, Sun X J, Tong H, et al. Mechanism investigation on effects of glass composition on Ag/Si contact for crystalline silicon solar cells [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 6778
doi: 10.1007/s10854-020-05211-8
12 Liu S T, Sun Q Y, Wang J B, et al. Exploration of the influence mechanism of La doping on the arc erosion resistance of Ag/SnO2 contact materials by a laser-simulated arc [J]. J. Mater. Eng. Perform., 2021, 30: 7577
doi: 10.1007/s11665-021-05966-z
13 Wu Q, Xu G F, Yuan M, et al. Influence of operation numbers on arc erosion of Ag/CuO electrical contact material [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2497
doi: 10.1007/s10854-019-02786-9
14 Zhou X, Cui X L, Chen M, et al. Evaporation erosion of contacts under static arc by gas dynamics and molten pool simulation [J]. IEEE. Trans. Plasma Sci., 2015, 43: 4149
15 Wang Y L, Liang S H, Li Z B. Experiment and simulation analysis of surface structure for CuW contact after arc erosion [J]. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1179/1743284714Y.0000000518
16 Wang J, Kang Y Q, Wang C. Microstructure and vacuum arc characteristics of CuO skeletal structure Ag-CuO contact materials [J]. J. Alloys Compd., 2016, 686: 702
doi: 10.1016/j.jallcom.2016.05.271
17 dos Santos J F, Staron P, Fischer T, et al. Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation [J]. Acta Mater., 2018, 148: 163
doi: 10.1016/j.actamat.2018.01.020
18 Wang Z, Wang X, Tong Y G, et al. Impact of structure and flow-path on in situ synthesis of AlN: Dynamic microstructural evolution of Al-AlN-Si materials [J]. Sci. China Mater., 2018, 61: 948
doi: 10.1007/s40843-017-9198-4
19 Duan C X, Yu Y, Yang P F, et al. Engineering new defects in MIL-100 (Fe) via a mixed-ligand approach to effect enhanced volatile organic compound adsorption capacity [J]. Ind. Eng. Chem. Res., 2020, 59: 774
doi: 10.1021/acs.iecr.9b05751
20 Wang Z, Zhang Y J, Jiang S, et al. The red deer antler: Bioinspired design of an Al-Si composite with a fenestrated network-particle structure [J]. J. Materiomics, 2020, 6: 545
doi: 10.1016/j.jmat.2020.04.002
21 Davis J R. Metals Handbook [M]. 2nd Ed., Materials Park, Ohio: ASM International, 1998: 415
22 Lyon R N. Liquid-Metals Handbook [M]. 2nd Ed., Washington: U. S. Government Printing Office, 1952: 38
23 Ayyar A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites [J]. Compos. Sci. Technol., 2006, 66: 1980
doi: 10.1016/j.compscitech.2006.01.007
24 Wu Y, Yang L H, Xu T F, et al. Combined effect of rarefaction and effective viscosity on micro-elasto-aerodynamic lubrication performance of gas microbearings [J]. Micromachines, 2019, 10: 657
doi: 10.3390/mi10100657
25 Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge [J]. Corros. Sci., 2019, 156: 147
doi: 10.1016/j.corsci.2019.05.005
26 Zhang X H, Zhang Y, Tian B H, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts [J]. Composites, 2019, 160B: 110
27 Li H Y, Li P, Wang J, et al. Microstructure and properties of AgSnO2 contact materials prepared by cold spray [J]. Rare Met. Mater. Eng., 2017, 46: 3858
李海燕, 李 鹏, 王 军 等. 冷喷涂AgSnO2触点涂层的组织与性能 [J]. 稀有金属材料与工程, 2017, 46: 3858
28 Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!