Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy
HAN Luhui1, KE Haibo2(), ZHANG Pei1, SANG Ge1, HUANG Huogen1()
1.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China 2.Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:
HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy. Acta Metall Sin, 2022, 58(10): 1316-1324.
Due to their high strength and excellent anticorrosive properties, U-based amorphous alloys are quite promising for applications in nuclear-related fields. However, they face the challenge of crystallization due to high temperatures during some applications. Currently, focus on the crystallization mechanism of such materials is limited; thus, further investigation is required. Herein, using differential scanning calorimetry, both nonisothermal and isothermal crystallization kinetics of typical amorphous U60Fe27.5Al12.5 alloy were investigated. This alloy was further analyzed using different theoretical methods. The alloy exhibited the glass transition activation energy of slightly more than 270 kJ/mol and the melt fragility value of about 22, indicating that it is a strong metallic glass material. Based on the first exothermal crystallization peak, this glassy alloy is believed to possess the crystallization activation energy of 205-275 kJ/mol within nonisothermal method and 280-390 kJ/mol within the other method. The former value is much lower than the latter, which is consistent with the results of the conventional amorphous alloys. This general trend is mainly because crystallization can be activated more easily by a continuous increase in temperature. The kinetic factor of the alloy was in the ranges of 3-4 and 2.5-3 under the nonisothermal and isothermal conditions, respectively, demonstrating that the devitrification of the noncrystalline U-Fe-Al alloy greatly depends on the nucleation process, which is prone to occur during a rise in temperature.
Fund: Joint Funds of National Natural Science Foundation of China(U2030208);National Natural Science Foundation of China(51731002);Strengthening Fundamental Foundation Project(JCJQ-20190415);Fund of Science and Technology on Surface Physics and Chemistry Laboratory(6142A02200205)
About author: KE Haibo, professor, Tel: (0769)89136229, E-mail: kehaibo@sslab.org.cn;HUANG Huogen, professor, Tel: (0816)3626968, E-mail: hhgeng2002@sina.com
Fig.1 DSC curves of U60Fe27.5Al12.5 amorphous alloy at different heating rates (a), Kissinger plots (b) and Ozawa plots (c) to calculate the activation energies relative to Eg, Ex and m and extrapolation of Tg, Tx1, and Tx2 at different heating rates to obtain the Kauzmann temperature (TK) (d) (θ—heating rate;T—temperature; Tg—glass transition temperature; Tx1 and Tx2—crystallization temperatures; Eg—activation energy relative to Tg; Ex1 and Ex2—activation energies relative to Tx1 and Tx2, respectively; m—fragility)
θ / (K·min-1)
Tg / K
Tx1 / K
Tx2 / K
10
630
677
734
20
637
687
742
40
645
698
754
80
653
710
768
160
664
722
781
Table 1 Thermodynamic temperatures of U60Fe27.5Al12.5 amorphous alloy
Eg
Ex1
Ex2
m
kJ·min-1
kJ·min-1
kJ·min-1
Ki
Oz
Ki
Oz
Ki
Oz
Ki
Oz
274.5
271.3
237.4
236.8
260.6
259.8
22.5
22.2
Table 2 Activation energies and fragility of U60Fe27.5Al12.5 amorphous alloy corresponding to Table 1 (Ki and Oz denote the Kissinger and Ozawa methods, respectively)
Fig.2 DSC curves at various heating rates (a) and plots of the crystallization volume fraction (x) (b) as a function of temperature of U60Fe27.5Al12.5 amorphous alloy
Fig.3 The Ozawa plots of -lnθ vs 1000 / T at different x (a), and the activation energy(Ec) as a function of x (b) of U60Fe27.5Al12.5 amorphous alloy
Fig.4 ln[-ln(1 - x)] vs 1000 / T plots at various heating rates (a), and plots of local kinetic factor (n) as a function of x (b) of U60Fe27.5Al12.5 amorphous alloy
Fig.5 DSC curves (a) and plots of x (b) as a function of the annealing temperature (t) of U60Fe27.5Al12.5 amorphous alloy annealed at different temperatures
Fig.6 Plots of crystallization time vs annealing temperature (a), and the activation energy as a function of x (b) of U60Fe27.5Al12.5 amorphous alloy annealed at different temperatures
Fig.7 Plots of ln[-ln(1 - x)] vs ln(t -τ) at various annealing temperatures (a), and plots of n as a function of 1 - x (b) of U60Fe27.5Al12.5 amorphous alloy (τ is the induction period before crystalliz-ation, n is local kinetic exponent)
Metallic glass
Tg / K
Tx / K
Eg
kJ·min-1
Ex or Ep / (kJ·min-1)
n
Ref.
Zr41Ti14Cu12.5Ni10Be22.5
626
(10 K·min-1)
692
(10 K·min-1)
~557 (Ki)
~192 (Ki)
-
[23]
Zr55Cu30Al10Ni5
~681
(20 K·min-1)
~764
(20 K·min-1)
894 (Ki)
230 (Ki)
245 (JMA, Iso)
2.6-3.1
(JMA, Iso)
[19]
Cu47Ti33Zr11Ni8Si1
691
(20 K·min-1)
752
(20 K·min-1)
-
~339 (Ki)
~354 (JMA, Iso)
2.8-3.5
(JMA, Iso)
[24]
Co43Fe20Ta5.5B31.5
~940
(25 K·min-1)
~980
(25 K·min-1)
-
437~595 (Ki)
432~582 (Oz)
-
[25]
Cu46Zr45Al7Y2
-
~741
(10 K·min-1)
-
340~361 (Ki)
484 (JMA, Iso)
2.4-2.7
(JMA, Iso)
[20]
Cu15(As2Se3)85
~463
(20 K·min-1)
~557
(20 K·min-1)
~282 (Ki)
~172 (Ki)
~3.8
(JMA, Non-iso)
[26]
Zr60Cu20Al10Ni10
~670
(20 K·min-1)
~740
(20 K·min-1)
-
202~327 (Ki)
215~339 (Oz)
1.5-15.7
(JMA, Non-iso)
[27]
Ca65Mg15Zn20
~375
(20 K·min-1)
~408
(20 K·min-1)
~148 (Ki)
116~124 (Ki)
147~178 (JMA, Iso)
2.0-2.7
(JMA, Iso)
[28]
Cu54Zr37Ti8In1
700
(25 K·min-1)
729
(25 K·min-1)
~321 (Ki)
331~392 (Ki)
2.0-4.5
(JMA, Non-iso)
[29]
Zr46Cu38Ag8Al8
-
~784
(20 K·min-1)
-
~310 (Ki)
~451 (JMA, Iso)
4.1-4.8
(JMA, Iso)
[30]
Ti16.7Zr16.7Hf16.7Cu16.7
Ni16.7Be16.7
~700
(20 K·min-1)
~740
(20 K·min-1)
~332 (Ki)
215~246 (Ki)
~260 (JMA, Iso)
1.8-2.1
(JMA, Iso)
[31]
U64Co28.5Al7.5
616
(20 K·min-1)
638
(20 K·min-1)
338 (Ki)
200~250 (Ki)
1.5-11.0
(JMA, Non-iso)
[32]
Table 3 Characteristic temperatures and crystallization kinetic parameters of some amorphous alloys[19,20,23-32]
1
Ortega L H, Blamer B, Stern K M, et al. Thermal conductivity of uranium metal and uranium-zirconium alloys fabricated via powder metallurgy [J]. J. Nucl. Mater., 2020, 531: 151982
doi: 10.1016/j.jnucmat.2019.151982
2
Li H B, Ding Q, Gu Y J, et al. The initial oxidation behavior of uranium and uranium-titanium alloys in standing storage [J]. Corros. Sci., 2020, 176: 108879
doi: 10.1016/j.corsci.2020.108879
3
Zubelewicz A, Addessio F L, Cady C M. A constitutive model for a uranium-niobium alloy [J]. J. Appl. Phys., 2006, 100: 013523
4
Dash S, Ghoshal K, Kutty T R G. Thermodynamic investigations of uranium-rich binary and ternary alloys [J]. J. Therm. Anal. Calorim., 2013, 112: 179
doi: 10.1007/s10973-012-2801-9
5
Maslennikov A, Bessonov A, Peretroukhine V, et al. Uranium and U-Zr and U-Ru alloy corrosion rates in the transpassive state [J]. J. Alloys Compd., 2007, 444-445: 345
doi: 10.1016/j.jallcom.2007.06.078
6
Banos A, Harker N J, Scott T B. A review of uranium corrosion by hydrogen and the formation of uranium hydride [J]. Corros. Sci., 2018, 136: 129
doi: 10.1016/j.corsci.2018.03.002
7
Long Z, Liu K Z, Bai B, et al. Corrosion resistance of modified layer on uranium formed by plasma immersion ion implantation [J]. J. Alloys Compd., 2010, 491: 252
doi: 10.1016/j.jallcom.2009.09.164
8
Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta. Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
Huang H G, Zhang P G, Zhang P, et al. Comparison of glass forming ability between U-Co and U-Fe base systems [J]. Acta. Metall. Sin., 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
11
Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta. Metall. Sin., 2015, 51: 623
Zhang P, Pu Z, Zhang P G, et al. U-Fe-Al metallic glasses with superior glass forming ability and corrosion resistance [J]. J. Mater. Res. Technol., 2020, 9: 6209
doi: 10.1016/j.jmrt.2020.03.039
13
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
14
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
15
Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull. Chem. Soc. Japan, 1965, 38(11): 1881
doi: 10.1246/bcsj.38.1881
16
Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers [J]. J. Chem. Phys., 1999, 99: 4201
doi: 10.1063/1.466117
17
Wang T, Yang Y Q, Li J B, et al. Thermodynamics and structural relaxation in Ce-based bulk metallic glass-forming liquids [J]. J. Alloys Compd., 2011, 509: 4569
doi: 10.1016/j.jallcom.2011.01.106
18
Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
19
Liu L, Wu Z F, Zhang J. Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. J. Alloys Compd., 2002, 339: 90
doi: 10.1016/S0925-8388(01)01977-6
20
Qiao J C, Pelletier J M. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC) [J]. J. Non-Cryst. Solids, 2011, 357: 2590
doi: 10.1016/j.jnoncrysol.2010.12.071
21
Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J]. Thermochim. Acta, 1995, 267: 61
doi: 10.1016/0040-6031(95)02466-2
22
Lu W, Yan B, Huang W H. Complex primary crystallization kinetics of amorphous Finemet alloy [J]. J. Non-Cryst. Solids, 2005, 351: 3320
doi: 10.1016/j.jnoncrysol.2005.08.018
23
Zhuang Y X, Wang W H, Zhang Y, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10 - x Fe x Be22.5 bulk metallic glasses [J]. Appl. Phys. Lett., 1999, 75: 2392
doi: 10.1063/1.125024
24
Venkataraman S, Rozhkova E, Eckert J, et al. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: The effect of particulate reinforcement [J]. Intermetallics, 2005, 13: 833
doi: 10.1016/j.intermet.2005.01.010
25
Yuan Z Z, Chen X D, Wang B X, et al. Kinetics study on non-isothermal crystallization of the metallic Co43Fe20Ta5.5B31.5 glass [J]. J. Alloys Compd., 2006, 407: 163
doi: 10.1016/j.jallcom.2005.06.022
26
Kozmidis-Petrović A F, Lukić S R, Štrbac G R. Calculation of non-isothermal crystallization parameters for the Cu15(As2Se3)85 metal-chalcogenide glass [J]. J. Non-Cryst. Solids, 2010, 356: 2151
doi: 10.1016/j.jnoncrysol.2010.08.026
27
Zhuang Y X, Duan T F, Shi H Y. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass [J]. J. Alloys Compd., 2011, 509: 9019
doi: 10.1016/j.jallcom.2011.06.112
28
Hu L, Ye F. Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass [J]. J. Alloys Compd., 2013, 557: 160
doi: 10.1016/j.jallcom.2012.12.158
29
Wu J L, Pan Y, Huang J D, et al. Non-isothermal crystallization kinetics and glass-forming ability of Cu-Zr-Ti-In bulk metallic glasses [J]. Thermochim. Acta, 2013, 552: 15
doi: 10.1016/j.tca.2012.11.012
30
Cui J, Li J S, Wang J, et al. Crystallization kinetics of Cu38Zr46Ag8Al8 bulk metallic glass in different heating conditions [J]. J. Non-Cryst. Solids, 2014, 404: 7
doi: 10.1016/j.jnoncrysol.2014.07.029
31
Gong P, Yao K F, Ding H Y. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass [J]. Mater. Lett., 2015, 156: 146
doi: 10.1016/j.matlet.2015.05.018
32
Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252