Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (10): 1324-1334    DOI: 10.11900/0412.1961.2020.00045
Current Issue | Archive | Adv Search |
Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel
LU Chaoran1, XU Le1(), SHI Chao2, LIU Jinde3, JIANG Weibin4, WANG Maoqiu1
1 Central Iron & Steel Research Institute, Beijing 100081, China
2 Inner Mongolia North Heavy Industries Group Co. Ltd. , Baotou 014033, China
3 Ningxia Tiandi Benniu Industrial Group Co. Ltd. , Shizuishan 753001, China
4 Jianlong Beiman Special Steel Co. Ltd. , Qiqihaer 161041, China
Cite this article: 

LU Chaoran, XU Le, SHI Chao, LIU Jinde, JIANG Weibin, WANG Maoqiu. Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel. Acta Metall Sin, 2020, 56(10): 1324-1334.

Download:  HTML  PDF(5761KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

42CrMo steel has a good combination of strength and toughness after quenching and tempering treatment, which make it an ideal candidate material for high strength bolt. Nevertheless, with the increase of bolt diameter in wind power field, the hardenability of 42CrMo steel is inadequate to manufacture the high strength bolt with diameter over 36 mm. Recent study indicates that Al addition is an economical and effective way to affect the phase transformation product during quenching process. In order to improve the hardenability of 42CrMo bolt steel, the effect of Al on the hardenability of 42CrMo was investigated by Jominy test and cross section hardness distribution test. OM and SEM were used to analyze the morphology of the grain size; chemical phase analysis test was used to detect the precipitation in Al addition steels; the isothermal transformation diagram (TTT curve) was measured to study the phase transformation of the steels; the three dimensional atom probe (3DAP) was used to analyze the Al distribution in matrix; the tensile and impact toughness properties of Al addition steels were also examined. It was found that the hardenability of 42CrMo bolt steel could be improved significantly by Al-Ti and Al-B addition, the hardness was increased by 6 HRC at the position of 25 mm from quenched end, the center hardness in diameter of 42, 48 and 56 mm was increased by 7, 10 and 14 HRC, respectively. The improvement of hardenability for Al-Ti addition steel can be attributed to the increasing dissolved Al content in the matrix because of the Ti addition, which suppresses the formation of bainite during the quenching process. The hardenability of Al-B addition steel is better than that of Al-Ti addition steel, which can be ascribed to the dissolved Al and B inhibiting the phase transformation of ferrite and pearlite. Moreover, Al can play an important role in increasing dissolved B content by means of AlN formation, in which the dissolved Al dispersive distribution in matrix is favorable to improve the hardenability of 42CrMo steel. Meanwhile, the tensile strength and Charpy V-notch impact energy at -40 ℃ of Al addition steels are adequate to manufacture grade 12.9 high strength bolt.

Key words:  42CrMo steel      hardenability      3DAP      mechanical property      phase analysis     
Received:  14 February 2020     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2016YFB0300104)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00045     OR     https://www.ams.org.cn/EN/Y2020/V56/I10/1324

SampleSteelAlsBTiN
1#42CrMo---0.0028
2#Al-Ti0.040-0.0280.0065
3#Al-B0.0740.0012-0.0076
Table 1  Chemical compositions of the experimental steel
Fig.1  Hardenability curves of the tested steels by Jominy method
Fig.2  Cross-sectional hardness curves of the tested steels with the diameters of 42 mm (a), 48 mm (b) and 56 mm (c) (R—radius of cross section)
Fig.3  Grain morphologies of the tested steels of 1# (a), 2# (b) and 3# (c)
Fig.4  Microstructures of the tested steels of 1# (a, b), 2# (c, d) and 3# (e, f) at 25 mm (a, c, e) and 35 mm (b, d, f) distances from the quenched end
Fig.5  Comparisons of cross-sectional core structures of 1# (a~c), 2# (d~f) and 3# (g~i) steels with the diameters of 42 mm (a, d, g), 48 mm (b, e, h) and 56 mm (c, f, i)
Fig.6  Tensile strength and low temperature (-40 ℃) impact properties of the tested steels at different tempering temperatures (Rm—tensile strength, KV2—Charpy V-notch impact energy)
Fig.7  Isothermal transformation curves of 42CrMo steel undercooled austenite (F—ferrite, B—bainite, P—pearlite, Ac1—start temperature of austenite formation during heating, Ac3—finish temperature of austenite formation during heating, Ms—martensite start temperature)
Fig.8  XRD spectra of the 2# (a) and 3# (b) steels
Fig.9  SEM images (a, c, e) and EDS analyses (b, d, f) of Ti(C, N) (a, b), AlN (c, d), BN (e, f) precipitated in 2# steel (a, b) and 3# steel (c~f)
Fig.10  Phase analysis results of the tested steels
Fig.11  Needle tip samples with grain boundary (a) and three-dimensional spatial distribution of alloy element atoms (b), metal element content at the needle tip (c) measured by 3DAP
Color online
Fig.12  Element distributions of 2# steel in 3D space
Color online
Fig.13  Distribution of elements at grain boundaries in 3D space
Color online
(a) isoconcentration surface with 0.4%Mo (atomic fraction)(b) content of each element in the diameter 5 nm×40 nm micro-region across the grain boundary
[1] Bayrak M, Ozturk F, Demirezen M, et al. Analysis of tempering treatment on material properties of DIN 41Cr4 and DIN 42CrMo4 steels [J]. J. Mater. Eng. Perform., 2007, 16: 597
doi: 10.1007/s11665-007-9043-1
[2] Brnic J, Turkalj G, Canadija M, et al. Study of the effects of high temperatures on the engineering properties of steel 42CrMo4 [J]. High Temp. Mater. Processes, 2015, 34: 27
[3] Qu Z, Guo K H. Embrittlement of bolts made of the 25Cr2Mo1V steel after long exposure at 540 ℃ [J]. Acta Metall. Sin., 1980, 16: 371
(曲 哲, 郭可信. 25Cr2Mo1V钢螺栓在540℃长期使用中变脆的研究 [J]. 金属学报, 1980, 16: 371)
[4] Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high-strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, A755: 50
[5] Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness [J]. Mater. Sci. Eng., 2019, A759: 298
[6] Pan Z Y, Lai C B, Shi R C, et al. Development and application of high strength steel for bolts [J]. Iron Steel, 2001, 36(4): 47
(潘祖诒, 赖朝彬, 石荣才等. 高强度螺栓钢的研制与应用 [J]. 钢铁, 2001, 36(4): 47)
[7] Jia G Q, Shen H W, Zhu Y M. Tensile stress relaxation of turbine bolt steels at high temperature [J]. Acta Metall. Sin. (Engl. Lett.), 2004, 17: 220
[8] Wang M Q, Dong H, Hui W J, et al. Effect of heat treatment on delayed fracture resistance of structural steel 42CrMo [J]. Acta Metall. Sin., 2002, 38: 715
(王毛球, 董 瀚, 惠卫军等. 热处理对42CrMo钢的耐延迟断裂性能的影响 [J]. 金属学报, 2002, 38: 715)
[9] Yang Y. Fatigue properties and failure analysis of connection bolt in wind power application [D]. Dalian: Dalian Maritime University, 2015
(杨 阳. 风电连接螺栓疲劳性能及其失效分析 [D]. 大连: 大连海事大学, 2015)
[10] Liu C, Zhao M C, Unenbayar T, et al. Hot deformation behavior of a new nuclear use reduced activation ferritic/martensitic steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 825
doi: 10.1007/s40195-018-0851-0
[11] Zhang X M. Fracture analysis of high strength bolt for wind power unit [J]. Met. Prod., 2013, 39(2): 45
(张先鸣. 风电机组用高强度螺栓断裂分析 [J]. 金属制品, 2013, 39(2): 45)
[12] Hosford W F. Iron and Steel [M]. New York: Cambridge University Press, 2012: 137
[13] Prayitno D, Sugiarto R. Effect of aluminizing on hardenability of steel (S45C) [J]. IOP Conf. Ser. Earth Environ. Sci., 2018, 106: 12051
doi: 10.1088/1755-1315/106/1/012051
[14] Wu J X, Peng Z Y, Liu J, et al. Influence of alloying elements and microstructure on the hardness of 42CrMo steel [J]. Res. Iron Steel, 2012, 40(4): 28
(吴俊雄, 彭振宇, 刘 建等. 合金元素及显微组织对42CrMo钢硬度的影响 [J]. 钢铁研究, 2012, 40(4): 28)
[15] Ma D L, Liu J J, Ma D H. Influence of microalloying elements on microstructure and mechanical properties of 42CrMo steel [J]. China Heavy Equip., 2016, (2): 40
(马东良, 刘佳佳, 马东辉. 微合金化元素对42CrMo钢组织与性能的影响 [J]. 中国重型装备, 2016, (2): 40)
[16] Foy W J. The effect of boron on the hardenability of steel [D]. Montana: Montana School of Mines, 1943
[17] Mackenzie D. Hardenability [J]. Gear Solutions, 2017, 23(5): 20
[18] Zhao M C, Unenbayar T, Zhao Y C, et al. Influence of tempering temperature on the microstructure and mechanical properties of a Cr-Ni-Mo-alloyed steel for rock drill applications [J]. Steel Res. Int., 2019, 90: 1900297
doi: 10.1002/srin.v90.12
[19] Kraposhin V S, Talis A L, Kamenskaya N I, et al. Arrangement of collective B12 atoms in the crystal structure of γ-Fe and effect of boron on the hardenability of Steel [J]. Met. Sci. Heat Treat., 2018, 60: 63
doi: 10.1007/s11041-018-0241-2
[20] Jiang S J. Study on the determination method of trace boron in steel and its influence on hardenability [D]. Hangzhou: Zhejiang University of Technology, 2015
(蒋胜军. 钢中微量硼的测定方法研究及其对钢淬透性的影响 [D]. 杭州: 浙江工业大学, 2015)
[21] Si T Z, Wu Z S, Gao Y L, et al. Microstructure and mechanical properties of the microalloyed 42CrMo steels with Ti and B [J]. Heat Treat. Met., 2012, 37(11): 46
(斯庭智, 吴宗双, 高亚磊等. Ti、B微合金化42CrMo钢的组织与性能 [J]. 金属热处理, 2012, 37(11): 46)
[22] Yutaro I, Yasuhiro M, Takeshi F, et al. Improvement of hardenability and toughness of SCM440 with addition of Al [J]. Sanyo Tech. Rep., 2013, 20(1): 24
(石原悠太郎, 松本康弘, 藤松威史等. Alを活用したSCM440の焼入性ならびに焼入焼戻し材の靭性の改善 [J]. 山陽特殊製鋼技報, 2013, 20(1): 24)
[23] Zhang J, Qu J B, Zhang K, et al. Effect of wTi/wN and wAl on hardenability and mechanical properties of B-containing steels [J]. J. Iron Steel Res. Int., 2016, 28(2): 57
(张 娟, 曲锦波, 张 宽等. wTi/wNwAl对含B钢淬透性及力学性能的影响 [J]. 钢铁研究学报, 2016, 28(2): 57)
doi: 10.13228/j.boyuan.issn1001- 0963.20150204
[24] Pan T, Wang X Y, Su H, et al. Effect of alloying element Al on hardenabilitity and mechanical properties of micro-B treated ultra-heavy plate steels [J]. Acta Metall. Sin., 2014, 50: 431
doi: 10.3724/SP.J.1037.2013.00754
(潘 涛, 王小勇, 苏 航等. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响 [J]. 金属学报, 2014, 50: 431)
doi: 10.3724/SP.J.1037.2013.00754
[25] Du Y. Applications of TEM and 3DAP to measurement of phase diagrams [J]. J. Phase Equilib. Diffus., 2014, 35: 519
doi: 10.1007/s11669-014-0337-3
[26] Huang S, Wu B B, Wang Z Q, et al. EBSD study on the significance of carbon content on hardenability [J]. Mater. Lett., 2019, 254: 412
doi: 10.1016/j.matlet.2019.07.106
[27] Honma T, Yanagita S, Hono K, et al. Coincidence doppler broadening and 3DAP study of the pre-precipitation stage of an Al-Li-Cu-Mg-Ag alloy [J]. Acta Mater., 2004, 52: 1997
doi: 10.1016/j.actamat.2003.12.043
[28] Yu X M, Zhao S J. Study on Cu precipitate of the low C high strength steel containing Cu and Ni during isochronal tempering [J]. Acta Metall. Sin., 2013, 49: 569
doi: 10.3724/SP.J.1037.2012.00666
(余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时回火析出富Cu相的研究 [J]. 金属学报, 2013, 49: 569)
doi: 10.3724/SP.J.1037.2012.00666
[29] Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy [J]. Scr. Mater., 2005, 53: 675
doi: 10.1016/j.scriptamat.2005.05.030
[30] Doane D V. Application of hardenability concepts in heat treatment of steel [J]. J. Heat Treat., 1979, 1: 5
[31] Xin Y R, Hai S R, Yong W K, et al. Solid-state diffusion bonding of NbSS/Nb5Si3 composite using Ni/Al and Ti/Al nanolayers [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1142
doi: 10.1007/s40195-019-00906-2
[32] Yuan G T, Fang L, An W Z, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК151 [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1298
doi: 10.1007/s40195-019-00894-3
[33] Yong Q L. Second Phase in Iron and Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 78
(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 78)
[34] He X F, Cao Y G, Wang M Q, et al. Effect of grain size on hardenability of gear steel [J]. J. Iron Steel Res. Int., 2018, 30: 206
(何肖飞, 曹燕光, 王毛球等. 齿轮钢晶粒尺寸对淬透性的影响 [J]. 钢铁研究学报, 2018, 30: 206)
[35] Zhang X M, Wang Y Y, Liu S G, et al. Effect of trace Co on the hardenability of 7085 aluminum alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2993
[36] Liu M, Xu G, Tian J Y, et al. The effect of stress on bainite transformation, microstructure, and properties of a low-carbon bainitic steel [J]. Steel Res. Int., 2019, 90: 1900159
doi: 10.1002/srin.v90.10
[37] Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels [J]. Scr. Mater., 2011, 64: 1118
doi: 10.1016/j.scriptamat.2011.03.003
[38] Wu H D, Miyamoto G, Yang Z G, et al. Incomplete bainite transformation accompanied with cementite precipitation in Fe-1.5(3.0)%Si-0.4%C alloys [J]. Acta Metall. Sin., 2018, 54: 367
doi: 10.11900/0412.1961.2017.00262
(武慧东, 宫本吾郎, 杨志刚等. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出 [J]. 金属学报, 2018, 54: 367)
doi: 10.11900/0412.1961.2017.00262
[39] Chen J D, Mo W L, Wang P, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo [J]. Acta Metall. Sin., 2012, 48: 1186
doi: 10.3724/SP.J.1037.2012.00340
(陈俊丹, 莫文林, 王 培等. 回火温度对42CrMo钢冲击韧性的影响 [J]. 金属学报, 2012, 48: 1186)
doi: 10.3724/SP.J.1037.2012.00340
[40] Chen J R, Li C J. Solid Phase Transitions in Metals and Alloys [M]. Beijing: Metallurgical Industry Press, 1997: 215
(陈景榕, 李承基. 金属与合金中的固态相变 [M]. 北京: 冶金工业出版社, 1997: 215)
[41] Çakir M, Özsoy A. Investigation of the correlation between thermal properties and hardenability of Jominy bars quenched with air-water mixture for AISI 1050 steel [J]. Mater. Des., 2011, 32: 3099
doi: 10.1016/j.matdes.2010.12.035
[42] Chi C Y, Dong J X, Liu W Q, et al. 3DAP investigation of precipitation behavior of Cu-rich phase in Super304H heat resistant steel [J]. Acta Metall. Sin., 2010, 46: 1141
doi: 10.3724/SP.J.1037.2009.00853
(迟成宇, 董建新, 刘文庆等. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为 [J]. 金属学报, 2010, 46: 1141)
doi: 10.3724/SP.J.1037.2009.00853
[43] Xie C, Wu X C, Min N, et al. Carbon segregation behavior of high-carbon high-alloy steel during deep cryogenic treatment using 3DAP [J]. Acta Metall. Sin., 2015, 51: 325
doi: 10.11900/0412.1961.2014.00430
(谢 尘, 吴晓春, 闵 娜等. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为 [J]. 金属学报, 2015, 51: 325)
doi: 10.11900/0412.1961.2014.00430
[44] Long X Y, Kang J, Lv B, et al. Carbide-free bainite in medium carbon steel [J]. Mater. Des., 2014, 64: 237
doi: 10.1016/j.matdes.2014.07.055
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!