Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 785-794    DOI: 10.11900/0412.1961.2019.00299
Current Issue | Archive | Adv Search |
Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs
LI Yuancai, JIANG Wugui(), ZHOU Yu
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(3638KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel nano-honeycombs (NNHC) would be expected to an ideal anode material for solid oxide fuel cells (SOFC) because of its high surface area and highly ordered pore network. But, the anode material requires excellent mechanical properties to withstand stresses that arise during processing and service at different temperatures. The influence of temperature on the mechanical behaviors under radial (y axis) tension, radial compression, axial (z axis) tension and axial compression, is investigated by molecular dynamics (MD) by taking the carbon nanotubes (CNT)-reinforced NNHC (CRNNHC) composites with the mass fractions of CNT (ωCNT) of 5.22‰ and its corresponding NNHC as the example. The results show that the mechanical properties including elastic modulus(E) and ultimate stress (σu)in NNHC and CRNNHC both decrease approximately linearly with the increase of temperature. Compared to NNHC, the addition of CNT has no obvious effect on the enhancement of radial mechanical properties of CRNNHC under different temperatures, but it results in a good reinforced effect on axial mechanical properties. While the axial tensile and compressive elastic moduli can be increased by 6.4%~10% and 9%~12% respectively, and the ultimate stress can be increased by 1.5%~5.3% and 10%~14% respectively. The study indicates that axial mechanical properties of the CRNNHC are generally superior to their radial mechanical properties, and the energy absorption before the axial deformation is relatively larger due to the existence of CNT.

Key words:  nickel nano-honeycomb (NNHC)      CNT-reinforced NNHC (CRNNHC)      mechanical property      molecular dynamics      temperature effect     
Received:  10 September 2019     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(11772145);National Natural Science Foundation of China(11372126)
Corresponding Authors:  JIANG Wugui     E-mail:  jiangwugui@nchu.edu.cn

Cite this article: 

LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs. Acta Metall Sin, 2020, 56(5): 785-794.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00299     OR     https://www.ams.org.cn/EN/Y2020/V56/I5/785

Fig.1  Molecular dynamics (MD) model in this work (R—radius of pore, CNT—carbon nanotube, NNHC-nickel nano-honeycombs, CRNNHC—CNT-reinforced NNHC)
(a) the model of CRNNHC
(b) the size distribution of CRNNHC
(c) the internal distribution of CNT in the CRNNHC
Fig.2  The radial tensile stress-strain curves of NNHC (a) and CRNNHC (b) with different temperatures (ε—strain)
Fig.3  The radial tensile E (a) and σu (b) of NNHC and CRNNHC with different temperatures (E—elastic modulus, σuultimate stress)
Fig.4  The radial compression stress-strain curves of NNHC (a) and CRNNHC (b) with different temperatures
Fig.5  The radial compressive E (a) and σu (b) of NNHC and CRNNHC with different temperatures
Fig.6  The axial tension stress-strain curves of NNHC (a) and CRNNHC (b) with different temperatures
Fig.7  Atomic snapshots of CRNNHC under axial tension at the temperature of 900 K with ε=0.084 (a) and ε=0.3 (b)
Fig.8  The axial tensile E (a) and σu (b) of NNHC and CRNNHC at different temperatures
Fig.9  The axial compression stress-strain curves of NNHC (a) and CRNNHC (b) with different temperatures
Fig.10  The axial compressive E (a) and σu (b) of NNHC and CRNNHC at different temperatures
Fig.11  Atomic snapshots of CRNNHC along different deformation directions of radial tension (a, b), radial compression (c, d), axial tension (e, f) and axial compression (g, h) under the temperature of 600 K
(a) εu=0.086 (b) εu=0.586 (c) εu=0.076 (d) εu=0.436
(e) εu=0.090 (f) εu=0.353 (g) εu=0.056 (h) εu=0.096
1 Ivers-Tiffée E, Weber A, Herbstritt D. Materials and technologies for SOFC-components [J]. J. Eur. Ceram. Soc., 2001, 21: 1805
2 Xu M, Li T, Yang M, et al. Solid oxide fuel cell interconnect design optimization considering the thermal stresses [J]. Sci. Bull., 2016, 61: 1333
doi: 10.1007/s11434-016-1146-3 pmid: 27635282
3 Radovic M, Lara-Curzio E. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen [J]. Acta Mater., 2004, 52: 5747
doi: 10.1016/j.actamat.2004.08.023
4 Frandsen H L, Ramos T, Faes A, et al. Optimization of the strength of SOFC anode supports [J]. J. Eur. Ceram. Soc., 2012, 32: 1041
doi: 10.1016/j.jeurceramsoc.2011.11.015
5 Yu J H, Park G W, Lee S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode [J]. J. Power Sources, 2007, 163: 926
6 Ge X M, Chan S H, Liu Q L, et al. Solid oxide fuel cell anode materials for direct hydrocarbon utilization [J]. Adv. Energy Mater., 2012, 2: 1156
doi: 10.1021/ja206278f pmid: 22011010
7 Halmenschlager C M, Korb M D A, Neagu R, et al. Nanostructured YSZ thin film for application as electrolyte in an electrode supported SOFC [J]. Mater. Sci. Forum, 2012, 727-728: 873
8 Ansar A, Soysal D, Schiller G. Nanostructured functional layers for solid oxide fuel cells [J]. Int. J. Energy Res., 2010, 33: 1191
9 Tsuchiya M, Lai B K, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells [J]. Nat. Nanotechnol., 2011, 6: 282
doi: 10.1038/nnano.2011.43 pmid: 21460827
10 Kang S, Su P C, Park Y I, et al. Thin-film solid oxide fuel cells on porous nickel substrates with multistage nanohole array [J]. J. Electrochem. Soc., 2006, 153: A554
11 Nelson P A, Elliott J M, Attard G S, et al. Mesoporous nickel/nickel oxide—A nanoarchitectured electrode [J]. Chem. Mater., 2002, 14: 524
doi: 10.1021/cm011021a
12 Nelson P A, Owen J R. A High-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes [J]. J. Electrochem. Soc., 2003, 150: A1313
13 Treacy M M J, Ebbesen T W, Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678
doi: 10.1038/381678a0
14 Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54
doi: 10.1038/382054a0
15 Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84: 4613
doi: 10.1103/PhysRevLett.84.4613 pmid: 10990753
16 Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells [J]. J. Power Sources, 2007, 170: 79
doi: 10.1016/j.bioelechem.2019.05.008 pmid: 31158799
17 Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater. Sci. Eng, 2003, A362: 228
18 Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells [J]. Nano Lett., 2011, 11: 291
doi: 10.1021/nl103905t pmid: 21158405
19 Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites [J]. Ceram. Int., 2000, 26: 677
doi: 10.1038/nmat793 pmid: 12652671
20 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Appl. Phys. Lett., 2000, 76: 2868
doi: 10.1046/j.1365-2818.2001.00940.x pmid: 11580811
21 Curtin W A, Sheldon B W. CNT-reinforced ceramics and metals [J]. Materialstoday, 2004, 7: 44
22 Song Q S, Aravindaraj G K, Sultana H, et al. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries [J]. Electrochim. Acta, 2007, 53: 1890
23 Jiang J, Liu J P, Zhou W W, et al. CNT/Ni hybrid nanostructured arrays: synjournal and application as high-performance electrode materials for pseudocapacitors [J]. Energy Environ. Sci., 2011, 4: 5000
24 Jang J W, Choi H J, Kwon O H, et al. Densification behavior and electrical properties of carbon nanotube-Ni nanocomposite films for co-fireable microcircuit electrodes [J]. Thin Solid Films, 2018, 660: 754
25 Liu X, Gurel V, Morris D, et al. Bioavailability of nickel in single-wall carbon nanotubes [J]. Adv. Mater., 2007, 19: 2790
26 Chen Y S, Huang J H. Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol [J]. Biosens. Bioelectron., 2010, 26: 207
doi: 10.1016/j.bios.2010.06.016 pmid: 20637593
27 Choi T, Kim S H, Lee C W, et al. Synjournal of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing [J]. Biosens. Bioelectron., 2015, 63: 325
doi: 10.1016/j.bios.2014.07.059 pmid: 25113051
28 Lin T C, Huang B R. Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing [J]. Sens. Actuators, 2012, 162B: 108
29 Esfarjani K, Gorjizadeh N, Nasrollahi Z. Molecular dynamics of single wall carbon nanotube growth on nickel surface [J]. Computat. Mater. Sci., 2006, 36: 117
doi: 10.1166/jnn.2004.063 pmid: 15296231
30 Shibuta Y, Maruyama S. A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes [J]. Chem. Phys. Lett., 2007, 437: 218
doi: 10.1016/j.cplett.2007.02.019
31 Oguri T, Shimamura K, Shibuta Y, et al. Ab initio molecular dynamics simulation of the dissociation of ethanol on a nickel cluster: Understanding the initial stage of metal-catalyzed growth of carbon nanotubes [J]. J. Phys. Chem., 2013, 117C: 9983
32 Fukuhara S, Shimojo F, Shibuta Y. Conformation and catalytic activity of nickel-carbon cluster for ethanol dissociation in carbon nanotube synjournal: Ab initio molecular dynamics simulation [J]. Chem. Phys. Lett., 2017, 679: 164
33 Song H Y, Zha X W. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites [J]. Comput. Mater. Sci., 2010, 49: 899
34 Song H Y, Zha X W. Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites [J]. Phys. Lett., 2010, 374A: 1068
35 Zhou X, Song S Y, Li L, et al. Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes [J]. J. Compos. Mater., 2015, 50: 191
36 Duan K, Li L, Hu Y J, et al. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights [J]. Physica, 2017, 88E: 259
doi: 10.1111/j.1755-3768.2010.01997.x pmid: 20977690
37 Zhang H F, Yan H L, Jia N, et al. Exploring plastic deformation mechanism of multilayered Cu/Ti composites by using molecular dynamics modeling [J]. Acta Metall. Sin., 2018, 54: 1333
张海峰, 闫海乐, 贾 楠等. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究 [J]. 金属学报, 2018, 54: 1333
38 Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
39 Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells [J]. Nat. Mater., 2004, 3: 17
doi: 10.1038/nmat1040 pmid: 14704781
40 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys. Rev., 1986, 33B: 7983
41 Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. J. Chem. Phys., 2000, 112: 6472
42 Lennard-Jones J E. Cohesion [J]. Proc. Phys. Soc., 1931, 43: 461
43 Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture [J]. Mol. Phys., 2008, 106: 2367
44 Kutana A, Giapis K P. Transient deformation regime in bending of single-walled carbon nanotubes [J]. Phys. Rev. Lett., 2006, 97: 245501
doi: 10.1103/PhysRevLett.97.245501 pmid: 17280296
45 Jiang L Y, Huang Y, Jiang H, et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force [J]. J. Mech. Phys. Solids, 2006, 54: 2436
46 Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
47 Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
48 Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
49 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
50 Wen Y H, Zhang Y, Zhu Z Z. Size-dependent effects on equilibrium stress and strain in nickel nanowires [J]. Phys. Rev., 2007, 76B: 125423
51 Rezaei R, Shariati M, Tavakoli-Anbaran H, et al. Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations [J]. Comput. Mater. Sci., 2016, 119: 19
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[6] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[7] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[12] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[13] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[14] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[15] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
No Suggested Reading articles found!