Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites
LI Yuancai, JIANG Wugui(), ZHOU Yu
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article:
LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites. Acta Metall Sin, 2020, 56(5): 776-784.
The performance of the new generation aero-engine is strongly dependent on the application of integral blisk technologies, while the high-risk failure of integral disk joints severely restricts the promotion of those technologies. Therefore, the molecular dynamics method is used to investigate the influence of nanopores on the tensile properties of single crystal/polycrystalline Ni composites. The results show that the addition of single crystal nickel can increase the tensile strength of single crystal/polycrystalline Ni compared with polycrystalline nickel. The influence of pore position distribution on the tensile properties of single crystal/polycrystalline Ni is investigated. The simulation results show that nanopore defects in a single crystal region significantly aggravate the fracture at the single crystal/polycrystalline Ni interface. Pores not only penetrate the interface of composites but also rapidly expand inside the single crystal and the polycrystalline crystal, in which the interface of composites is further reduced resulting in the failure acceleration of single crystal/polycrystalline Ni composites. On the contrary, when the pores are in a polycrystalline region, the interface of single crystal/polycrystalline Ni hinders the amorphization of the polycrystalline nickel side and inhibits the pores from spreading toward the interface. When the pores are in the interface region, the pores do not continue to expand into the single crystal, but propagate inside the polycrystalline crystal. The effect of the porosity of interface pores on the tensile properties of single crystal/polycrystalline Ni is also discussed. It is found that the tensile strengthof single crystal/polycrystalline Ni decreases rapidly when the void porosity exceeds 0.8%. Finally, the influence of the number of voids on the tensile properties while maintaining the porosity of the interface pores is analyzed. When the porosity of the prefabricated pores of the interface is kept constant at 0.8%, the larger the number of pores (i.e., the smaller the pores), the larger the elastic modulus. In the plastic deformation stage, due to the large number of dispersed small pore structures at the interface of the single crystal/polycrystalline Ni composites, the dislocation motion is hindered, which plays a certain strengthening role and improves the tensile strength of the single crystal/polycrystalline Ni composites. It can be concluded that single crystal/polycrystalline Ni with dispersed small pores has better tensile properties than those with large pores.
Fig.1 Molecular dynamics models of single crystal nickel (a), polycrystalline nickel (b) and the schematic construction of a single crystal/polycrystalline nickel composites in which prefabricated voids are located on the central line of the construction (The distance between prefabricated void centers d=4, 8 or 10 nm) (c)
Fig.2 Tensile stress-strain curves of different constructions of crystalline nickel with void-free and with a prefabricated void with radius R=1.1 nm
Fig.3 Tensile stress-strain curves of single crystal/polycrystalline Ni composites with void-free or prefabricated voids located on the central line of the construction near the single crystal side (a), near the polycrystalline side (b) and near the interface of single crystal/polycrystalline nickel composites (c) (ε—strain)
Fig.4 Atomic snapshots of single crystal/polycrystalline nickel composites, as shown in Fig.1, with prefabricated voids with R=0.6 nm near the single crystal side (a~c), prefabricated voids with R=0.5 nm near the polycrystal side (d~f) and prefabricated voids with R=0.6 nm near the interface in single crystal/polycrystalline nickel interface (g~i) under different ε (a) ε=0.099 (b) ε=0.139 (c) ε=0.199 (d) ε=0.069 (e) ε=0.246 (f) ε=0.346 (g) ε=0.034 (h) ε=0.256 (i) ε=0.369
Fig.5 Stress-strain curves (a) and elastic modulus variation curve (b) of single crystal/polycrystalline nickel composites with void-free and different numbers of prefabricated voids (N) in the interface of single crystal/polycrystalline nickel composites
Fig.6 Atomic snapshots of single crystal/polycrystalline nickel composites with prefabricated void with R=0.5848 nm in the interface of single crystal/polycrystalline nickel composites under ε=0.099 (a), ε=0.199 (b) and ε=0.324 (c)
Fig.7 Radial distribution function (G(r)) curves of single crystal/polycrystalline nickel composites under different strains (r—distance between atoms)
1
Liu G Y. Molecular dynamics simulation of hole tensile deformation in nanocrystalline copper [J]. J. At. Mol. Phys., 2004, 21(Suppl.): 377
Zhang N. Molecular dynamic simulation on mechanical behavior of nano-bicrystal copper under uniaxial tension [D]. Wuhan: Huazhong University of Science and Technology, 2008
张 宁. 纳米双晶铜单向拉伸力学行为的分子动力学模拟 [D]. 武汉: 华中科技大学, 2008
3
Yang X H, Zhou T, Chen C Y. Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void [J]. Comput. Mater. Sci., 2007, 40: 51
4
Liu T, Deng Q, Liu Y, et al. Strength analysis of an aero engine blisk [J]. Mech. Res., Appl., 2015, 28(4): 94
Qin D S, Chen B Y, Sun J N. Numerical simulation on the enhanced heat transfer effects of the blisk to the blades and disk in the turbine [J]. Tactical Missile Technol., 2015, (2): 49
Peng X J, Zhu W J, Chen K G, et al. Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading [J]. J. Appl. Phys., 2016, 119: 165901
7
Rui Z Y, Cao H, Luo D C, et al. Effect of hole size on single crystal γ-TiAl alloy crack propagation based on molecular dynamics simulation [J]. Rare Met. Mater. Eng., 2017, 46: 2505
Luo D C, Zhang L, Fu R, et al. Molecular dynamics simulation of nano single crystal gamma-TiAl alloy strain rate effect [J]. Rare Met. Mater. Eng., 2018, 47: 853
Shang J, Yang F, Li C, et al. Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation [J]. Comput. Mater. Sci., 2018, 148: 200
10
Zhu P Z, Hu Y Z, Wang H. Atomistic simulations of the effect of a void on nanoindentation response of nickel [J]. Sci. China Phys. Mech. Astron., 2010, 53: 1716
11
Ito A, Okamoto S. Tensile and shearing properties of vacancy-containing graphene using molecular dynamics simulations [J]. J. Commun. Comput., 2013, 10: 9
12
Yang B, Zheng B L, Hu X J, et al. Effect of void on nanoindentation process of Ni-based single crystal alloy [J]. Acta Metall. Sin., 2016, 52: 129
Guo J X, Wang B, Yang Z Y. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites [J]. Acta Mater. Compos. Sin., 2014, 31: 152
Hua J, Song C, Duan Z R, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites [J]. Acta Mater. Compos. Sin., 2018, 35: 632
Borg U, Niordson C F, Kysar J W. Size effects on void growth in single crystals with distributed voids [J]. Int. J. Plast., 2008, 24: 688
16
Stewart D, Cheong K S. Molecular dynamics simulations of dislocations and nanocrystals [J]. Curr. Appl. Phys., 2008, 8: 494
17
Huang M S, Li Z H, Wang C. Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals [J]. Acta Mater., 2007, 55: 1387
18
Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity [J]. Mater. Des., 2018, 150: 139
19
Ruestes C J, Bringa E M, Stukowski A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scr. Mater., 2013, 68: 817
20
Horstemeyer M F, Farkas D, Kim S, et al. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue [J]. Int. J. Fatigue, 2010, 32: 1473
21
Yuan F P, Wu X L. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression [J]. AIP Adv., 2014, 4: 127109
22
Cao A J, Wei Y G. Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel [J]. Phys. Rev., 2007, 76B: 024113
23
Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
24
Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
25
Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
26
Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
27
Mishin Y, Farkas D, Mehl M J, et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations [J]. Phys. Rev., 1999, 59B: 3393
28
Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel [J]. Philos. Mag., 1987, 56A: 735
29
Chang L, Zhou C Y, Wen L L, et al. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire [J]. Comput. Mater. Sci., 2017, 128: 348
30
Ma B, Rao Q H, He Y H. Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire [J]. Comput. Mater. Sci., 2016, 117: 40
31
Shi G J, Wang J G, Hou Z Y, et al. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire [J]. Mod. Phys. Lett., 2017, 31B: 1750247
32
Gao A, Mukherjee S, Srivastava I, et al. Atomistic origins of ductility enhancement in metal oxide coated silicon nanowires for Li‐ion battery anodes [J]. Adv. Mater. Interfaces, 2017, 4: 1700920
33
Cheng Q, Wu H A, Wang Y, et al. Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations [J]. Appl. Phys. Lett., 2009, 95: 021911
doi: 10.1063/1.3183584
34
Zheng M. Molecular dynamics simulation of tensile mechanical properties and defect behavior of metal-single crystal [D]. Nanjing: Nanjing University of Science and Technology, 2007