Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (5): 638-646    DOI: 10.11900/0412.1961.2018.00301
Current Issue | Archive | Adv Search |
Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding
Ting ZHANG,Yuhong ZHAO(),Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU
1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Cite this article: 

Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding. Acta Metall Sin, 2019, 55(5): 638-646.

Download:  HTML  PDF(19229KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a new type of carbon material reinforcement, graphene nanoplatelets (GNPs) have excellent mechanical, electrical, thermal and optical properties. Adding GNPs with a large specific surface area to the magnesium matrix can significantly improve the mechanical properties, the thermal and electrical properties of the magnesium matrix. However, so far, few reports focused on GNPs reinforced magnesium matrix composites, especially for lack of feasible fabrication technologies. Thus, in the present work, a new method for fabricating GNPs reinforced magnesium matrix composites is presented. First, the GNPs were dispersed by ultrasonic dispersion. Subsequently, the AZ91D magnesium alloy particles and the uniformly dispersed GNPs were mixed in a V-type powder mixer. Finally, GNPs reinforced magnesium matrix composites were prepared by semi-solid thixomolding. The effects of GNPs contents (0.3%, 0.6%, 0.9%, mass fraction) on the microstructure and properties of magnesium matrix composites were studied. The results show that the GNPs were uniformly distributed in the matrix, which were well combined with the matrix, and the addition of GNPs could refine the grain size and reduce porosity. Compared with AZ91D magnesium alloy, the addition of GNPs improved the tensile strength and hardness of the material. When the content of GNPs was 0.6%, the mechanical properties of the composites were the best, and the hardness and tensile strength reach up to 92.3 HV and 245 MPa.

Key words:  graphene nanoplatelet      magnesium matrix composite      thixomolding      mechanical property     
Received:  02 July 2018     
ZTFLH:  TG292  
Fund: National Natural Science Foundation of China(51774254);National Natural Science Foundation of China(51774253);National Natural Science Foundation of China(51701187);National Natural Science Foundation of China(U1610123);National Natural Science Foundation of China(51674226);National Natural Science Foundation of China(51574207);National Natural Science Foundation of China(51574206);Science and Technology Major Project of Shanxi Province(MC2016-06)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00301     OR     https://www.ams.org.cn/EN/Y2019/V55/I5/638

Fig.1  Schematic of Thixomolder
Fig.2  Thixomolded composite mold and sampling locations for OM observation (position A), hardness measurement (position B) and density (position C)
Fig.3  TEM images (a, b) and XRD spectrum (c) of graphene nanoplatelets (GNPs)
Fig.4  Appearances of AZ91D magnesium alloy particles without (a) and with (b) GNPs
Fig.5  OM images of AZ91D (a) and AZ91D composites with 0.3%GNPs (b), 0.6%GNPs (c) and 0.9%GNPs (d) fabricated by thixomolding (Insets show the corresponding distributions of grain size)
Fig.6  SEM images (a, b) and EDS (c) of 0.6%GNPs/AZ91D composite fabricated by thixmolding
Fig.7  EDS map analyses of 0.6%GNPs/AZ91D composite fabricated by thixmoldingColor online(a) Mg (b) Al (c) O (d) C (e) EDS
Fig.8  TEM (a) and HRTEM (b) images of 0.6%GNPs/AZ91D composite fabricated by thixmolding
Fig.9  XRD spectra of AZ91D and GNPs/AZ91D composites fabricated by thixmolding

Material[border:border-top:solid;border-bottom:solid;]

Theoretical density

g·cm-3

Measured density

g·cm-3

Porosity

%

AZ91D1.8101.6677.9
0.3%GNPs/AZ91D1.8111.6936.5
0.6%GNPs/AZ91D1.8111.7135.4
0.9%GNPs/AZ91D1.8121.7324.4
Table 1  Theoretical, experimental densities and porosities of AZ91D and GNPs/AZ91D composites fabricated by thixmolding

Material[border:border-top:solid;border-bottom:solid;]

Vickers hardness

HV

σ0.2

MPa

σb

MPa

Failure strain

%

AZ91D68.11431752.1
0.3%GNPs/AZ91D78.51542053.0
0.6%GNPs/AZ91D92.31652453.9
0.9%GNPs/AZ91D83.11512212.5
Table 2  Mechanical properties of AZ91D and GNPs/AZ91D composites fabricated by thixmolding
Fig.10  Tensile curves of AZ91D and GNPs/AZ91D composites fabricated by thixmolding
[1] KandemirS. Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing[J]. J. Mater. Eng. Perform., 2018, 27: 3014
[2] FengY, ChenC, PengC Q, et al. Research progress on magnesium matrix composites[J].Chin. J. Nonferrous Met., 2017, 27: 2385
[2] (冯 艳, 陈 超, 彭超群等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27: 2385)
[3] NovoselovK S, GeimA, MorozovS V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[4] LiM X, ZhaoY H, ChenL W, et al. Research progress on preparation technology of graphene-reinforced aluminum matrix composites[J]. Mater. Res. Express, 2019, 6: 032002
[5] LeopoldC, LiebigW V, WittichH, et al. Size effect of graphene nanoparticle modified epoxy matrix[J]. Compos. Sci. Technol., 2016, 134: 217
[6] LiD S, WuW Z, QinQ H, et al. Microstructure and mechanical properties of graphene/Al composites[J].Chin. J. Nonferrous Met., 2015, 25: 1498
[6] (李多生, 吴文政, QinQ H, et al. 石墨烯/Al复合材料的微观结构及力学性能 [J]. 中国有色金属学报, 2015, 25: 1498)
[7] HuZ, TongG, LinD, et al. Graphene-reinforced metal matrix nanocomposites—A review[J]. Mater. Sci. Technol., 2016, 32: 930
[8] KumarH G P, XaviorM A. Graphene reinforced metal matrix composite (GRMMC): A review[J]. Proc. Eng., 2014, 97: 1033
[9] ChenL Y, KonishiH, FehrenbacherA, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scr. Mater., 2012, 67: 29
[10] WuL Q, WuR Z, HouL G, et al. Microstructure, mechanical properties and wear performance of AZ31 matrix composites reinforced by graphene nanoplatelets (GNPs)[J]. J. Alloys Compd., 2018, 750: 530
[11] RashadM, PanF S, ZhangJ Y, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy[J]. J. Alloys Compd., 2015, 646: 223
[12] DuX, DuW B, WangZ H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2018, A711: 633
[13] RashadM, PanF S, TangA T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. J. Alloys Compd., 2014, 603: 111
[14] HaH W, ChoudhuryA, KamalT, et al. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites[J]. ACS Appl. Mater. Interfaces, 2012, 4: 4623
[15] RashadM, PanF S, AsifM. Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Mater. Sci. Eng., 2016, A649: 263
[16] CuiX P. The research on the microstructure and process of thixomolding AZ91D magnesium Alloy[D]. Changchun: Jilin University, 2006
[16] (崔晓鹏. AZ91D镁合金半固态触变注射组织与工艺研究 [D]. 长春: 吉林大学, 2006)
[17] PatelH A, ChenD L, BholeS D, et al. Microstructure and tensile properties of thixomolded magnesium alloys[J]. J. Alloys Compd., 2010, 496: 140
[18] ChengP, ZhaoY H, LuR P, et al. Effect of Ti addition on the microstructure and mechanical properties of cast Mg-Gd-Y-Zn alloys[J]. Mater. Sci. Eng., 2017, A708: 482
[19] MansoorB, MukherjeeS, GhoshA, et al. Microstructure and porosity in thixomolded Mg alloys and minimizing adverse effects on formability[J]. Mater. Sci. Eng., 2009, A512: 10
[20] ChenL W, ZhaoY H, YanF, et al. Statistical investigations of serpentine channel pouring process parameters on semi-solid ZL101 aluminum alloy slurry using response surface methodology[J]. J. Alloys Compd., 2017, 725: 673
[21] HashimotoY, HinoM, MitookaY, et al. Effects of fixing carbon nanoparticle to AZ91D magnesium alloy chip surface on thixomold forming[J]. Mater. Trans., 2016, 57: 183
[22] ChenL W, ZhaoY H, HouH, et al. Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process[J]. J. Alloys Compd., 2019, 778: 359
[23] RashadM, PanF S, TangA T, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Prog. Nat. Sci., 2014, 24: 101
[24] ArsenaultR J, ShiN. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Mater. Sci. Eng., 1986, 81: 175
[25] YuanQ H, ZhouG H, LiaoL, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127: 177
[26] LiM, GaoH Y, LiangJ M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites[J]. Mater. Charact., 2018, 140: 172
[27] RashadM, PanF S, TangA T, et al. Powder metallurgy of Mg-1%Al-1% Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. J. Ind. Eng. Chem., 2014, 20: 4250
[28] XiangS L, GuptaM, WangX J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets[J]. Composites, 2017, 100A: 183
[29] SeretisG V, KouzilosG, PolyzouA K, et al. Effect of graphene nanoplatelets fillers on mechanical properties and microstructure of cast aluminum matrix composites[J]. Nano Hybr. Compos., 2017, 15: 26
[30] QuX N. Study on microstructure and properties of AZ31 magnesium matrix composites reinforced by carbon nanotubes and graphenes[D]. Chengdu: Southwest Jiaotong University, 2017
[30] (屈晓妮. 碳纳米管和石墨烯增强AZ31镁基复合材料的组织和性能研究 [D]. 成都: 西南交通大学, 2017)
[31] NietoA, BishtA, LahiriD, et al. Graphene reinforced metal and ceramic matrix composites: A review[J]. Int. Mater. Rev., 2016, 62: 241
[32] RafieeM A, RafieeJ, WangZ, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3: 3884
[33] XiangS L, WangX J, GuptaM, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Sci. Rep., 2016, 6: 38824
[34] LuoH. Research on the microstructure and properties of graphene nanoplatelets reinforced aluminum matrix composites[D]. Harbin: Harbin Institute of Technology, 2015
[34] (罗 昊. 石墨烯微片增强铝基复合材料组织与性能的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!