Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (5): 627-637    DOI: 10.11900/0412.1961.2018.00534
Current Issue | Archive | Adv Search |
Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite
Jianxiang DING1,2,Wubian TIAN2,Dandan WANG2,Peigen ZHANG2,Jian CHEN2,Zhengming SUN2()
1. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China
2. Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Cite this article: 

Jianxiang DING,Wubian TIAN,Dandan WANG,Peigen ZHANG,Jian CHEN,Zhengming SUN. Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite. Acta Metall Sin, 2019, 55(5): 627-637.

Download:  HTML  PDF(44932KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ag-based contact is widely used in low-voltage switch (contactor, relay and breaker), which determines the safety and stability of the circuit. Toxic Ag/CdO goes against the development of environmentally friendly materials and will be excluded from future market. Ag/10%Ti2AlC (mass fraction, Ag/10TAC) composite shows excellent arc erosion resistance, and has the potential to replace Ag/CdO. Dynamic electric arc discharging experiment was performed on the Ag/10TAC contact surface to investigate its arc erosion mechanism. Inhomogeneous arc erosion generates three featured regions (unaffected, transitional, affected) on the contact surface. The various microstructure and chemical composition of Ag are attributed to the melting and vaporization of Ag, absorption of O2, deposition of Ag-O vapor, and interdiffusion of Ag-Al. The rapid "decomposition-oxidation" process of Ti2AlC accounts for the microstructure evolution and oxidation behavior of Ti2AlC during arc erosion. The changes of structure and function on the contact surface lead to the degradation of Ag/10TAC composite.

Key words:  metal-ceramic composite      electrical contact material      MAX phase      microstructure      oxidation      electric arc erosion mechanism     
Received:  23 November 2018     
ZTFLH:  TG148  
Fund: National Natural Science Foundation of China(51731004);National Natural Science Foundation of China(51671054);National Natural Science Foundation of China(51501038);Fundamental Research Funds for the Central Universities in China(2242018K40108);Fundamental Research Funds for the Central Universities in China(2242018K40109);Natural Science Foundation of Jiangsu Province(BK20181285)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00534     OR     https://www.ams.org.cn/EN/Y2019/V55/I5/627

Fig.1  SEM image (a) and XRD spectrum (b) of the Ag/10%Ti2AlC (Ag/10TAC) composite before electric arc discharging test (Inset shows the high magnified SEM image)
Fig.2  OM images of the Ag/10TAC contacts under electric arc discharging of 1 (a), 10 (b), 100 (c), 1000 (d) and 5610 (e) times in sequence
Fig.3  Mass loss and area loss of the Ag/10TAC contacts with increasing discharging times
Fig.4  Overall morphology evolutions of Ag/10TAC contacts with the increasing discharging of 1 (a), 10 (b), 100 (c), 1000 (d) and 5610 (e) times in sequence, and schematic of the electric arc action on the surface of Ag/10TAC contact (f)
Fig.5  Low (a) and high (b) magnified SEM images of uneroded region on the Ag/10TAC contact surface after 1-time discharging
Fig.6  Microstructures and element compositions of transition regions A (a) and B (b) on the Ag/10TAC contact surface (in Fig.4a) after 1-time discharging (Inset shows the enlarged image of Ti2AlC) and EDS element map results of transition regions A (c) and B (d)
Fig.7  Microstructures and element composition of the eroded region on the Ag/10TAC contact surface after 1-time discharging(a) molten pool and its inside (b) enlarged image of Ti2AlC in the center of eroded region
Fig.8  Microstructures and element composition of the eroded region on the Ag/10TAC contact surface after 10-times discharging(a) eroded region (b) enlarged image of spongy structure
Fig.9  Microstructures of the eroded region on the Ag/10TAC contact surface after 100-times discharging(a) eroded region (b) enlarged image of dark block
ElementPoint 1Point 2Point 3
Ag3.042.943.20
Ti28.9624.6822.75
Al8.046.565.86
C17.1023.6219.05
O42.8642.2049.14
Ti/Al3.603.763.88
O/Ti1.481.712.16
Table 1  EDS analyses of dark block in Fig.9b (atomic fraction / %)
Fig.10  Microstructure of the affected region on the Ag/10TAC contact surface after 1000-times discharging (a), enlarged SEM image of the dark block (b), XRD spectrum of the eroded region (c), SEM image of block with erosion pit (d) and enlarged image of erosion pit (e)
Fig.11  Microstructure of the eroded region on the Ag/10TAC contact surface after 5610-times discharging (a) and enlarged image of the broken block (b)
Fig.12  Schematics of electric arc erosion mechanism and degradation process of Ag/10TAC compositeColor online(a) electric arc acts on the contact surface and molten pool forms(b) Ag-O vapor deposits on contact surface and transitional region forms(c) inter-diffusion of Ag-Al deepens and thin TixOy layer generates in the early period(d) TixOy layer thickens(e) thick TixOy blocks with cracks form(f) TixOy blocks are damaged by electric arc and new Ag/TAC composite exposes
ElementPoint 1Point 2
Ag0.380.23
Ti27.1240.33
Al7.6219.58
C10.3727.24
O54.5112.62
Ti/Al3.562.06
O/Ti2.010.31
Table 3  EDS analyses on the edge and inside of erosion pit in Fig.10e (atomic fraction / %)
ElementPoint 1Point 2Point 3
Ag0.390.230.11
Ti33.9032.1129.13
Al9.719.078.16
C3.122.402.88
O52.8856.1959.72
Ti/Al3.493.543.57
O/Ti1.561.752.05
Table 2  EDS analyses of dark block in Fig.10b (atomic fraction / %)
[1] SawaK, HasegawaM. Recent researches and new trends of electrical contacts[J]. IEICE Trans. Electron., 2000, 83: 1363
[2] DingJ X, SunZ M, ZhangP G, et al. Current research status and outlook of Ag-based contact materials[J].Mater. Rev., 2018, 32(1): 58
[2] (丁健翔, 孙正明, 张培根等. Ag基触头材料的研究现状与展望 [J]. 材料导报, 2018, 32(1): 58)
[3] PonsF, CherkaouiM, IlaliI, et al. Evolution of the AgCdO contact material surface microstructure with the number of arcs[J]. J. Electron. Mater., 2010, 39: 456
[4] ItoT, ManoK. Experimental study of contact arc discharge and contact welding phenomena[J]. IEEE Trans. Compon., Hybrids, Manuf. Technol., 1982, 5: 62
[5] NilssonO, HaunerF, JeannotD. Replacement of AgCdO by AgSnO2 in DC contactors[A]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, 2004 [C]. Seattle, WA, USA: IEEE, 2004: 70
[6] SchroderK H. Silver-metal oxides as contact materials[J]. IEEE Trans. Compon., Hybrids, Manuf. Technol., 1987, 10: 127
[7] SheaJ J. Erosion and resistance characteristics of AgW and AgC contacts[J]. IEEE Trans. Compon. Pack. Technol., 1999, 22: 331
[8] WuC P, YiD Q, LiJ, et al. Investigation on microstructure and performance of Ag/ZnO contact material[J]. J. Alloys Compd., 2008, 457: 565
[9] BarsoumM W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates[J]. Prog. Solid State Chem., 2000, 28: 201
[10] SunZ M. Progress in research and development on MAX phases: A family of layered ternary compounds[J]. Int. Mater. Rev., 2011, 56: 143
[11] DingJ, ZhangP, TianW B, et al. The effects of Sn content on the microstructure and the formation mechanism of Ti2SnC powder by pressureless synthesis[J]. J. Alloys Compd., 2017, 695: 2850
[12] HuangX C, FengY, QianG, et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere[J]. Ceram. Int., 2017, 43: 10601
[13] HuangX C, FengY, QianG, et al. Erosion behavior of Ti3AlC2 cathode under atmosphere air arc[J]. J. Alloys Compd., 2017, 727: 419
[14] HuangX C, FengY, QianG, et al. Arc corrosion behavior of Cu-Ti3AlC2 composites in air atmosphere[J]. Sci. China Technol. Sci., 2018, 61: 551
[15] ZhangP, NgaiT L, DingZ, et al. Erosion craters on Ti3SiC2 anode[J]. Phys. Lett., 2014, 378A: 2417
[16] ZhangP, NgaiT L, XieH, et al. Erosion behaviour of a Ti3SiC2 cathode under low-current vacuum arc[J]. J. Phys., 2013, 46D: 395202
[17] ZhuJ Q, ErikssonA O, GhafoorN, et al. Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation[J]. J.Vac. Sci. Technol., 2011, 29A: 031601
[18] ZhangP, NgaiT L, WangA D, et al. Arc erosion behavior of Cu-Ti3SiC2 cathode and anode[J]. Vacuum, 2017, 141: 235
[19] DingJ, TianW B, ZhangP, et al. Arc erosion behavior of Ag/Ti3AlC2 electrical contact materials[J]. J. Alloys Compd., 2018, 740: 669
[20] DingJ X, TianW B, ZhangP G, et al. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging[J]. J. Adv. Ceram., 2019, 8: 90
[21] WangD D, TianW B, MaA B, et al. Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing[J]. J. Alloys Compd., 2019, 784: 431
[22] TakeuchiM, KubonoT. A spectroscopic detecting system for measuring the temperature distribution of silver breaking arc using a CCD color camera[J]. IEEE Trans. Instrum. Meas., 1999, 48: 678
[23] TallmanD J, AnasoriB, BarsoumM W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Mater. Res. Lett., 2013, 1: 115
[24] WangX H, ZhouY C. Oxidation behavior of Ti3AlC2 at 1000-1400 ℃ in air[J]. Corros. Sci., 2003, 45: 891
[25] XuJ J, GaoZ H, QianY H, et al. Ultra-high-temperature oxidation and thermal stability of Ti2AlC in air at 1600-1800 ℃[J]. Oxid. Met., 2016, 86: 327
[26] TzenovN V, BarsoumM W. Synthesis and characterization of Ti3AlC2[J]. J. Am. Ceram. Soc., 2000, 83: 825
[27] ZhangJ, LiuB, WangJ Y, et al. Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations[J]. J. Mater. Res., 2009, 24: 39
[28] DongH Y, YanC K, ChenS Q, et al. Solid-liquid reaction synthesis and thermalstability of Ti2SnC powders[J]. J. Mater. Chem., 2001, 11: 1402
[29] ZhouY C, DongH Y, WangX H. High-temperature oxidation behavior of a polycrystalline Ti2SnC ceramic[J]. Oxid. Met., 2004, 61: 365
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!