Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 704-710    
  论文 本期目录 | 过刊浏览 |
基于离异共析转变的共析钢组织细化
李龙飞1;李伟1;孙祖庆1;杨王玥2
1.北京科技大学新金属材料国家重点实验室; 北京 100083
2.北京科技大学材料科学与工程学院; 北京 100083
MICROSTRUCTURE REFINEMENT OF EUTECTOID STEEL BASED ON DIVORCED EUTECTOID TRANSFORMATION
LI Longfei1; LI Wei1; SUN Zuqing1; YANG Wangyue2
1.State Key Laboratory for Advanced Metals and Materials; University of Science \& Technology Beijing; Beijing 100083
2.Materials Science and Engineering School; University of Science \& Technology Beijing; Beijing 100083
引用本文:

李龙飞 李伟 孙祖庆 杨王玥. 基于离异共析转变的共析钢组织细化[J]. 金属学报, 2009, 45(6): 704-710.
, , , . MICROSTRUCTURE REFINEMENT OF EUTECTOID STEEL BASED ON DIVORCED EUTECTOID TRANSFORMATION[J]. Acta Metall Sin, 2009, 45(6): 704-710.

全文: PDF(11079 KB)  
摘要: 

通过在Gleeble 1500热模拟试验机上进行的单轴热压缩实验并结合SEM和EBSD分析技术,研究了共析钢在A1---Ar1A1---Ac1温度范围内的两阶段变形对缓冷组织的影响. 结果表明: 共析钢在A1---Ar1温度范围内进行过冷奥氏体形变后, 在A1---Ac1温度范围内再变形时, 可以利用应变量控制再奥氏体化进程, 在一定应变量下获得奥氏体与未溶渗碳体粒子的混合组织, 在随后的缓冷过程中发生离异共析转变, 获得超细化 (α+θ)复相组织, 其中α--Fe平均晶粒尺寸小于3 μm, θ--Fe3C粒子平均尺寸小于0.5 μm.

关键词 共析钢 离异共析转变 组织细化 奥氏体 应变量    
Abstract

For high carbon steels, the (α+θ) microduplex structure consisting of ultrafine ferrite matrix and dispersed cementite particles demonstrates a good balance between strength and ductility as compared with a normal microstructure, i.e., lamellar pearlite in eutectoid steel or lamellar pearlite plus pro--eutectoid cementite in hypereutectoid steel. The divorced eutectoid transformation (DET) has been confirmed to be very effective in ultrahigh carbon steels for the production of the (α+θ) microduplex structure. In ultrahigh carbon steels, DET takes place during slow cooling of a mixing microstructure of austenite plus dispersed undissolved cementite particles formed by the intercritical annealing within the (γ+θ) two phase range. Due to the absence of the (γ+θ) two phase range, DET is difficult to take place in eutectoid steel. In the present work, DET was realized in eutectoid steel by a special thermal--mechanical treatment, which involved two--stage hot deformation in the temperature ranges of A1 to Ar1 and A1 to Ac1 and subsequent slow cooling. The microstructure evolution during such treatment was studied by hot uniaxial compression tests using a
Gleeble 1500 hot simulation test machine in combination with SEM and EBSD. The results indicate that during hot deformation in the
temperature range of A1 to Ac1 after hot deformation of undercooled austenite in the temperature range of A1 to Ar1 , the re--austenization could be controlled by the applied strain, leading to the formation of the mixing microstructure of austenite plus undissolved cementite particles at certain conditions. During subsequent slow cooling, DET took place, resulting in the formation of an ultrafine (α+θ) microduplex structure with α--Fe
grains less than 3 μm and θ--Fe3C particles less than 0.5 μm.

Key wordseutectoid steel    divorced eutectoid transformation    microstructure refinement    austenite    strain
收稿日期: 2008-12-05     
ZTFLH: 

TG142.1

 
基金资助:

新金属材料国家重点实验室资助项目

作者简介: 李龙飞, 男, 1977年生, 助理研究员, 博士

[1] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall , 1984; 18: 799
[2] Sherby O D. ISIJ Int, 1999; 39: 637
[3] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[4] Walser B, Sherby O D. Metall Trans, 1979; 10A: 1461
[5] Wadsworth J, Lin J H, Sherby O D. Met Technol, 1981; 8: 190
[6] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[7] Syn C K, Lesuer D R, Sherby O D. Metall Mater Trans, 1994; 25A: 1481
[8] Langford G. Metall Trans, 1977; 8A: 861
[9] Fu W, Furuhara T, Maki T. ISIJ Int, 2004; 44: 171
[10] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 2005; 45: 392
[11] Lupton D F, Warrington D H. Met Sci J, 1972; 6: 200
[12] Kaspar R, Kapellner W, Lang C. Steel Res, 1988; 59: 492
[13] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724
(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)
[14] Li L F, Yang W Y, Sun Z Q. Metall Mater Trans, 2007; 39A: 624
[15] Chen W, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2009; 45: 151
(陈 \ \ 伟, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2009; 45: 151)
[16] Xu P G, Tomota Y. Acta Metall Sin, 2006; 42: 681
(徐平光, 友田阳. 金属学报, 2006; 42: 681)
[17] Honda K, Saito S. J Iron Steel Inst, 1920; 102: 261
[18] Whiteley J H. J Iron Steel Inst, 1922; 105: 339
[19] Payson P, Hodapp W L, Leeder J. Trans ASM, 1940; 28:306
[20] Grossmann M A, Bain E C. Principles of Heat Treatment. 5th ed., Ohio: American Society for Metals, 1964: 201
[21] Cullen O E. Met Prog, 1953; 64: 79
[22] Parusov V V, Dolzhenkov I I, Sukhomlin V I. Met Sci Heat Treatment, 1985; 27: 402
[23] Verhoeven J D, Gibson E D. Metall Mater Trans, 1998; 29A: 1181
[24] Sun Z Q, Yang W Y, Qi J J, Hu A M. Mater Sci Eng, 2002; A334: 201
[25] Yang W Y, Qi J J, Sun Z Q, Yang P. Acta Metall Sin, 2004; 40: 135
(杨王玥, 齐俊杰, 孙祖庆, 杨平. 金属学报, 2004; 40: 135)
[26] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. ScrMater, 1999; 40: 675

[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[9] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[10] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[11] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[12] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[15] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.