Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1589-1599    DOI: 10.11900/0412.1961.2021.00560
  研究论文 本期目录 | 过刊浏览 |
钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为
韩汝洋1, 杨庚蔚1(), 孙新军2, 赵刚1, 梁小凯2, 朱晓翔1
1.武汉科技大学 耐火材料与冶金国家重点实验室 武汉 430081
2.钢铁研究总院 工程用钢研究所 北京 100053
Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel
HAN Ruyang1, YANG Gengwei1(), SUN Xinjun2, ZHAO Gang1, LIANG Xiaokai2, ZHU Xiaoxiang1
1.State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Department of Structrual Steels, Central Iron and Steel Research Institute, Beijing 100053, China
引用本文:

韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
Ruyang HAN, Gengwei YANG, Xinjun SUN, Gang ZHAO, Xiaokai LIANG, Xiaoxiang ZHU. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. Acta Metall Sin, 2022, 58(12): 1589-1599.

全文: PDF(5875 KB)   HTML
摘要: 

利用热模拟试验机、OM和TEM研究了钒微合金化中锰马氏体耐磨钢的奥氏体晶粒长大行为,分析了不同加热温度和保温时间下第二相粒子的形貌、尺寸和粒径分布及其与奥氏体晶粒长大行为的交互作用。结果表明,在820℃保温10 s时,试样的平均奥氏体晶粒尺寸为3.98 μm,继续保温3600 s后仅长大1.47 μm,具有较强的抗粗化能力。这是因为基体中细小的V(C, N)粒子钉扎奥氏体晶界,抑制了奥氏体晶粒的长大。随着保温温度升高和时间的增加,V(C, N)粒子发生溶解和粗化,钉扎能力减弱,奥氏体晶粒快速长大。利用增加时间指数的新型Sellars模型,通过预设误差函数的新型计算方法,建立了两段奥氏体长大模型,其与传统Beck模型相比,预测精度大幅度提升。

关键词 中锰马氏体耐磨钢V(C, N)析出钉扎力晶粒长大奥氏体晶粒长大模型    
Abstract

Medium manganese martensitic wear-resistant steel is a new type of wear-resistant steel with high hardenability and hardness; moreover, the controlling austenite grain size is of great significance for improving its comprehensive properties. In this study, the austenite growth behavior of vanadium microalloying medium manganese martensitic wear-resistant steel was systematically investigated using the Gleeble-3500 thermal simulation testing machine, OM, and HRTEM. The morphology, size, and particle size distribution of the second phase particles at different heating temperatures and holding times were analyzed. The influence of second phase particles on the growth behavior in austenite was also revealed. The results showed that the ultra-fine austenite grains with grain size of 3.98 μm were obtained when the sample was held at 820oC for 10 s. After holding for 3600 s, the average grain size of austenite only increased by 1.47 μm, and the austenite grains showed a strong ability to resist coarsening at 820oC. This could be attributed to the fine V(C, N) particles which could pin the austenite grain boundary and inhibit the growth of austenite grains. Furthermore, when reheating temperatures and holding times increase, the dissolution and coarsening of V(C, N) particles lead to the decrease of pining ability and then to the rapid growth of austenite. A new Sellars model with a time index was used to establish austenite growth model using a new method with a predetermined error function. The accuracy of the prediction for austenite grain sizes with new Sellars model was greatly improved compared with the traditional Beck model.

Key wordsmedium manganese martensitic wear-resistant steel    V(C, N) precipitation    pinning pressure    grain growth    austenitic grain growth model
收稿日期: 2021-12-14     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2017YFB0305100);湖北省重点研发计划项目(2020BAB057)
作者简介: 韩汝洋,男,1992年生,博士生
图1  试样制备与热处理工艺示意图
图2  试样在不同温度下保温3600 s后的OM像
图3  试样中奥氏体平均晶粒尺寸随加热温度变化曲线
图4  试样在820和950℃下保温不同时间的OM像
图5  试样在不同温度下奥氏体平均晶粒尺寸随保温时间的变化
图6  经不同温度保温600 s后试样中第二相粒子TEM像及EDS
图7  球形和短棒状第二相粒子的HRTEM像和快速Fourier变换谱
图8  经不同温度保温1800和3600 s后试样中第二相粒子形貌
图9  试样中V(C, N)粒子的平均直径随温度的变化
图10  不同温度下保温600、1800和3600 s后每平方微米内粒子数及第二相粒子直径分布图
Time / s820oC850oC900oC950oC
6000.315 ± 0.0250.231 ± 0.0320.126 ± 0.0360.049 ± 0.013
18000.273 ± 0.0370.211 ± 0.0330.086 ± 0.0290.037 ± 0.012
36000.265 ± 0.0430.169 ± 0.0380.046 ± 0.0210.023 ± 0.006
表1  不同温度下保温600、1800和3600 s后试样中第二相粒子体积分数 (volume fraction / %)
图11  第二相粒子产生的钉扎力与温度的关系
图12  不同温度阶段的误差随晶粒生长指数(n)的变化
图13  不同加热温度范围内ln(Dtn - D0n)与lnt和1 / T的线性拟合关系
图14  不同奥氏体长大模型的预测值与实验值比较
1 Gramlich A, Schmiedl T, Schönborn S, et al. Development of air-hardening martensitic forging steels [J]. Mater. Sci. Eng., 2020, A784: 139321
2 Yan X C, Hu J, Yu H, et al. Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel [J]. Wear, 2021, 476: 203745
3 Sun R M, Xu W H, Wang C Y, et al. Wear resistant of new type medium manganese high strength Martensite steel [J]. Iron Steel, 2012, 47: 64
3 孙荣民, 徐文欢, 王存宇 等. 新型中锰马氏体高强度钢的耐磨性能 [J]. 钢铁, 2012, 47: 64
4 Luo K S, Bai B Z. Microstructure, mechanical properties and high stress abrasive wear behavior of air-cooled MnCrB cast steels [J]. Mater. Des., 2010, 31: 2510
doi: 10.1016/j.matdes.2009.11.040
5 Gramlich A, Middleton A, Schmidt R, et al. On the influence of vanadium on air-hardening medium manganese steels for sustainable forging products [J]. Steel Res. Int., 2021, 92: 2000592
6 Pei Z Z, Song R B, Ba Q N, et al. Dimensionality wear analysis: Three-body impact abrasive wear behavior of a martensitic steel in comparison with Mn13Cr2 [J]. Wear, 2018, 414-415: 341
doi: 10.1016/j.wear.2018.09.002
7 Deng X T, Wang Z D, Tian Y, et al. An investigation of mechanical property and three-body impact abrasive wear behavior of a 0.27%C dual phase steel [J]. Mater. Des., 2013, 49: 220
doi: 10.1016/j.matdes.2013.01.024
8 Mondal J, Das K, Das S. An investigation of mechanical property and sliding wear behaviour of 400HV grade martensitic steels [J]. Wear., 2020, 458-459: 203436
9 Beck P A, Holzworth M L, Hu H. Instantaneous rates of grain growth [J]. Phys. Rev., 1948, 73: 526
doi: 10.1103/PhysRev.73.526
10 Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling [J]. Met. Sci., 1979, 13: 187
11 Uhm S, Moon J, Lee C, et al. Prediction Model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: Considering the effect of initial grain size on isothermal growth behavior [J]. ISIJ. Int., 2004, 44: 1230
doi: 10.2355/isijinternational.44.1230
12 Staśko R, Adrian H, Adrian A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel [J]. Mater. Charact., 2006, 56: 340
doi: 10.1016/j.matchar.2005.09.012
13 Yang G W, Sun X J, Li Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel [J]. Mater. Des., 2013, 50: 102
doi: 10.1016/j.matdes.2013.03.019
14 Yang G W, Sun X J, Yong Q L, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel [J]. J. Iron Steel Res. Int., 2014, 21: 757
doi: 10.1016/S1006-706X(14)60138-2
15 Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel [J]. Mater. Sci. Eng., 2009, A523: 77
16 Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size [J]. Acta Mater., 2006, 54: 1053
doi: 10.1016/j.actamat.2005.10.037
17 Moon J, Kim S, Lee J, et al. Coarsening behavior of the (Ti, Nb)(C, N) complex particle in a microalloyed steel weld heat-affected zone considering the critical particle size [J]. Metall. Mater. Trans., 2007, 38A: 2788
18 Dong J, Liu C X, Liu Y C, et al. Effects of two different types of MX carbonitrides on austenite growth behavior of Nb-V-Ti microalloyed ultra-high strength steel [J]. Fusion. Eng. Des., 2017, 125: 415
doi: 10.1016/j.fusengdes.2017.05.084
19 Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel [J]. Acta Mater., 2012, 60: 1015
doi: 10.1016/j.actamat.2011.11.016
20 Zhang Y, Li X H, Liu Y C, et al. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling [J]. Mater. Charact., 2020, 169: 110612
21 Yan B Y, Liu Y C, Wang Z J, et al. The effect of precipitate evolution on austenite grain growth in RAFM Steel [J]. Materials, 2017, 10: 1017
doi: 10.3390/ma10091017
22 Militzer M, Hawbolt E B, Ray Meadowcroft T, et al. Austenite grain growth kinetics in Al-killed plain carbon steels [J]. Metall. Mater. Trans., 1996, 27A: 3399
23 Pellissier G E. Stereology and Quantitative Metallography [M]. Philadelphia: American Society for Testing and Materials, 1972: 129
24 Ma H X, Li Y G. Measurement of size distribution and volume fraction of precipitates in silicon steel [J]. Mater. Sci. Eng., 2002, 20: 328
doi: 10.1016/0921-5107(93)90249-M
24 马红旭, 李友国. 硅钢中析出物的尺寸分布以及体积分数的测定 [J]. 材料科学与工程, 2002, 20: 328
25 Dang S E, Su Z N, Liu Z L, et al. Austenite grain growth behavior during heating process of as-cast 30Cr2Ni4MoV steel [J]. Chin. J. Mater. Res., 2014, 28: 675
doi: 10.11901/1005.3093.2014.024
25 党淑娥, 宿展宁, 刘志龙 等. 30Cr2Ni4MoV钢铸态加热过程中奥氏体晶粒的长大行为 [J]. 材料研究学报, 2014, 28: 675
doi: 10.11901/1005.3093.2014.024
26 Xu Y, Liu J S, Zhao Y, et al. Austenite grain growth kinetics and mechanism of grain growth in 12Cr ultra-super-critical rotor steel [J]. Philos. Mag., 2021, 101: 77
doi: 10.1080/14786435.2020.1821113
27 Ji G, Gao X H, Liu Z G, et al. In situ observation and modeling of austenite grain growth in a Nb-Ti-bearing high carbon steel [J]. J. Iron Steel Res. Int., 2019, 26: 292
doi: 10.1007/s42243-018-0083-6
28 Liu Z B, Tu X, Wang X H, et al. Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel [J]. J. Iron Steel Res. Int., 2020, 27: 732
doi: 10.1007/s42243-020-00429-6
[1] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[2] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[3] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[4] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[5] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[6] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[7] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[8] 岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
[9] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[10] 陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
[11] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
[12] 韩清超; 宋晓艳; 李凌梅; 刘雪梅 . 基于热力学函数的纳米晶粒长大Cellular Automaton仿真研究[J]. 金属学报, 2008, 44(4): 495-500 .
[13] 王浩; 刘国权 . 凸形多面体个体晶粒的三维von Neumann准确方程[J]. 金属学报, 2008, 44(11): 1332-1334 .
[14] 王浩; 刘国权; 秦湘阁 . 三维晶粒长大速率方程的大尺度Potts模型Monte Carlo仿真验证[J]. 金属学报, 2008, 44(1): 13-18 .
[15] 孙亚; 刘国权; 王超 . 相场仿真二维晶粒长大过程中的尺寸分布和拓扑演变[J]. 金属学报, 2004, 40(6): 609-.