|
|
钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为 |
韩汝洋1, 杨庚蔚1( ), 孙新军2, 赵刚1, 梁小凯2, 朱晓翔1 |
1.武汉科技大学 耐火材料与冶金国家重点实验室 武汉 430081 2.钢铁研究总院 工程用钢研究所 北京 100053 |
|
Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel |
HAN Ruyang1, YANG Gengwei1( ), SUN Xinjun2, ZHAO Gang1, LIANG Xiaokai2, ZHU Xiaoxiang1 |
1.State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2.Department of Structrual Steels, Central Iron and Steel Research Institute, Beijing 100053, China |
引用本文:
韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
Ruyang HAN,
Gengwei YANG,
Xinjun SUN,
Gang ZHAO,
Xiaokai LIANG,
Xiaoxiang ZHU.
Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. Acta Metall Sin, 2022, 58(12): 1589-1599.
1 |
Gramlich A, Schmiedl T, Schönborn S, et al. Development of air-hardening martensitic forging steels [J]. Mater. Sci. Eng., 2020, A784: 139321
|
2 |
Yan X C, Hu J, Yu H, et al. Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel [J]. Wear, 2021, 476: 203745
|
3 |
Sun R M, Xu W H, Wang C Y, et al. Wear resistant of new type medium manganese high strength Martensite steel [J]. Iron Steel, 2012, 47: 64
|
3 |
孙荣民, 徐文欢, 王存宇 等. 新型中锰马氏体高强度钢的耐磨性能 [J]. 钢铁, 2012, 47: 64
|
4 |
Luo K S, Bai B Z. Microstructure, mechanical properties and high stress abrasive wear behavior of air-cooled MnCrB cast steels [J]. Mater. Des., 2010, 31: 2510
doi: 10.1016/j.matdes.2009.11.040
|
5 |
Gramlich A, Middleton A, Schmidt R, et al. On the influence of vanadium on air-hardening medium manganese steels for sustainable forging products [J]. Steel Res. Int., 2021, 92: 2000592
|
6 |
Pei Z Z, Song R B, Ba Q N, et al. Dimensionality wear analysis: Three-body impact abrasive wear behavior of a martensitic steel in comparison with Mn13Cr2 [J]. Wear, 2018, 414-415: 341
doi: 10.1016/j.wear.2018.09.002
|
7 |
Deng X T, Wang Z D, Tian Y, et al. An investigation of mechanical property and three-body impact abrasive wear behavior of a 0.27%C dual phase steel [J]. Mater. Des., 2013, 49: 220
doi: 10.1016/j.matdes.2013.01.024
|
8 |
Mondal J, Das K, Das S. An investigation of mechanical property and sliding wear behaviour of 400HV grade martensitic steels [J]. Wear., 2020, 458-459: 203436
|
9 |
Beck P A, Holzworth M L, Hu H. Instantaneous rates of grain growth [J]. Phys. Rev., 1948, 73: 526
doi: 10.1103/PhysRev.73.526
|
10 |
Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling [J]. Met. Sci., 1979, 13: 187
|
11 |
Uhm S, Moon J, Lee C, et al. Prediction Model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: Considering the effect of initial grain size on isothermal growth behavior [J]. ISIJ. Int., 2004, 44: 1230
doi: 10.2355/isijinternational.44.1230
|
12 |
Staśko R, Adrian H, Adrian A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel [J]. Mater. Charact., 2006, 56: 340
doi: 10.1016/j.matchar.2005.09.012
|
13 |
Yang G W, Sun X J, Li Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel [J]. Mater. Des., 2013, 50: 102
doi: 10.1016/j.matdes.2013.03.019
|
14 |
Yang G W, Sun X J, Yong Q L, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel [J]. J. Iron Steel Res. Int., 2014, 21: 757
doi: 10.1016/S1006-706X(14)60138-2
|
15 |
Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel [J]. Mater. Sci. Eng., 2009, A523: 77
|
16 |
Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size [J]. Acta Mater., 2006, 54: 1053
doi: 10.1016/j.actamat.2005.10.037
|
17 |
Moon J, Kim S, Lee J, et al. Coarsening behavior of the (Ti, Nb)(C, N) complex particle in a microalloyed steel weld heat-affected zone considering the critical particle size [J]. Metall. Mater. Trans., 2007, 38A: 2788
|
18 |
Dong J, Liu C X, Liu Y C, et al. Effects of two different types of MX carbonitrides on austenite growth behavior of Nb-V-Ti microalloyed ultra-high strength steel [J]. Fusion. Eng. Des., 2017, 125: 415
doi: 10.1016/j.fusengdes.2017.05.084
|
19 |
Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel [J]. Acta Mater., 2012, 60: 1015
doi: 10.1016/j.actamat.2011.11.016
|
20 |
Zhang Y, Li X H, Liu Y C, et al. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling [J]. Mater. Charact., 2020, 169: 110612
|
21 |
Yan B Y, Liu Y C, Wang Z J, et al. The effect of precipitate evolution on austenite grain growth in RAFM Steel [J]. Materials, 2017, 10: 1017
doi: 10.3390/ma10091017
|
22 |
Militzer M, Hawbolt E B, Ray Meadowcroft T, et al. Austenite grain growth kinetics in Al-killed plain carbon steels [J]. Metall. Mater. Trans., 1996, 27A: 3399
|
23 |
Pellissier G E. Stereology and Quantitative Metallography [M]. Philadelphia: American Society for Testing and Materials, 1972: 129
|
24 |
Ma H X, Li Y G. Measurement of size distribution and volume fraction of precipitates in silicon steel [J]. Mater. Sci. Eng., 2002, 20: 328
doi: 10.1016/0921-5107(93)90249-M
|
24 |
马红旭, 李友国. 硅钢中析出物的尺寸分布以及体积分数的测定 [J]. 材料科学与工程, 2002, 20: 328
|
25 |
Dang S E, Su Z N, Liu Z L, et al. Austenite grain growth behavior during heating process of as-cast 30Cr2Ni4MoV steel [J]. Chin. J. Mater. Res., 2014, 28: 675
doi: 10.11901/1005.3093.2014.024
|
25 |
党淑娥, 宿展宁, 刘志龙 等. 30Cr2Ni4MoV钢铸态加热过程中奥氏体晶粒的长大行为 [J]. 材料研究学报, 2014, 28: 675
doi: 10.11901/1005.3093.2014.024
|
26 |
Xu Y, Liu J S, Zhao Y, et al. Austenite grain growth kinetics and mechanism of grain growth in 12Cr ultra-super-critical rotor steel [J]. Philos. Mag., 2021, 101: 77
doi: 10.1080/14786435.2020.1821113
|
27 |
Ji G, Gao X H, Liu Z G, et al. In situ observation and modeling of austenite grain growth in a Nb-Ti-bearing high carbon steel [J]. J. Iron Steel Res. Int., 2019, 26: 292
doi: 10.1007/s42243-018-0083-6
|
28 |
Liu Z B, Tu X, Wang X H, et al. Carbide dissolution and austenite grain growth behavior of a new ultrahigh-strength stainless steel [J]. J. Iron Steel Res. Int., 2020, 27: 732
doi: 10.1007/s42243-020-00429-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|