Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 597-607    DOI: 10.11900/0412.1961.2023.00038
  研究论文 本期目录 | 过刊浏览 |
汽车用齿轮钢16MnCrS5热处理变形机理
屈小波1(), 安金敏1, 王林2, 李喜2()
1 江苏永钢集团有限公司 苏州 215628
2 上海交通大学 材料科学与工程学院 上海 200240
Quenching Deformation of the 16MnCrS5 Gear Steel for Automobile
QU Xiaobo1(), AN Jinmin1, WANG Lin2, LI Xi2()
1 Jiangsu Yonggang Group Co. Ltd., Suzhou 215628, China
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

屈小波, 安金敏, 王林, 李喜. 汽车用齿轮钢16MnCrS5热处理变形机理[J]. 金属学报, 2025, 61(4): 597-607.
Xiaobo QU, Jinmin AN, Lin WANG, Xi LI. Quenching Deformation of the 16MnCrS5 Gear Steel for Automobile[J]. Acta Metall Sin, 2025, 61(4): 597-607.

全文: PDF(3636 KB)   HTML
摘要: 

针对16MnCrS5齿轮钢在淬火过程中易发生变形的问题,本工作结合实验与数值模拟方法,系统探讨其淬火变形机理。采用不同晶粒尺寸、组织带状化程度及淬透性的C型缺口试样进行淬火实验,测定了对应试样的淬火变形量。利用Deform有限元分析软件对上述试样在淬火处理过程中的温度场、应力场与相场进行模拟,可视化了其对应的淬火变形过程。结果表明,16MnCrS5齿轮钢的淬火变形量随晶粒尺寸和组织带状化程度的增加而增加,晶粒尺寸为75 μm的试样的淬火变形量相较于晶粒尺寸为22 μm的试样增加近一倍。当带状组织等级超过3级时,试样淬火变形量显著增加。16MnCrS5齿轮钢的淬火变形量随着淬透性的增加而增加,当试样距离水冷端9 mm处的硬度> 32.2 HRC时,淬火变形量与淬透性呈现更强的关联性。实验和数值模拟分析揭示16MnCrS5齿轮钢淬火热变形的内在机制主要归因于热应力和马氏体相变应力,其中,马氏体相变在时间和空间上的不均匀性是影响16MnCrS5齿轮钢淬火热变形的主要因素。

关键词 16MnCrS5齿轮钢淬火变形晶粒尺寸带状组织淬透性    
Abstract

The 16MnCrS5 gear steel, known for its exceptional machinability and hardenability, is commonly utilized in the production of gears and worms in the automotive industry. However, the quenching process of this steel tends to provoke deformation, leading to increased wear and an inability of gear teeth to mesh. This issue seriously restricts the broader use of 16MnCrS5 gear steel. This study explores the quenching deformation of 16MnCrS5 gear steel through a combination of experimental research and numerical simulation to provide theoretical insight to mitigate this deformation in industrial production. The quenching deformations of C-notch samples derived from 16MnCrS5 gear steel, varying in grain size, banded structures, and hardenabilities were first measured. Subsequently, employing the deform finite element analysis software, the temperature field, stress field, and phase field during the quenching of these samples were simulated, thereby visually portraying the corresponding quenching deformation processes. The results indicate that the quenching deformation of 16MnCrS5 gear steel escalates with an increase in grain size and the proportion of banded structures. For instance, the sample with a grain size of 75 μm demonstrated nearly double the quenching deformation of the sample with a grain size of 22 μm. Moreover, when the grade of the banded structure surpasses 3, the quenching deformation of the sample markedly increases. Concurrently, the results revealed a positive correlation between quenching deformation and hardenability of 16MnCrS5 gear steel. Specifically, when the hardness at 9 mm from the quenching end (J9) > 32.2 HRC, the sample's core is largely martensitic, showing a stronger correlation with hardenability. Conversely, when J9 ≤ 32.2 HRC, there is noticeable bainitic transformation in the sample's core, resulting in a weaker correlation between the quenching deformation and hardenability. The experimental research and numerical simulations suggest that the intrinsic mechanism of quenching deformation in 16MnCrS5 gear steel is mainly attributable to thermal stress and martensitic transformation-induced stress. Notably, the temporal and spatial inhomogeneity of the martensite transformation in time and spatial distribution is the predominant factor affecting the quenching deformation of 16MnCrS5 gear steel.

Key words16MnCrS5 gear steel    quenching deformation    grain size    banded structure    hardenability
收稿日期: 2023-02-02     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51690164);张家港科技计划项目(ZKCXY2146)
通讯作者: 屈小波,qubo6101@163.com,主要从事钢铁材料改性及研发研究;
李 喜,lx_net@sina.com,主要从事外场下金属凝固研究
Corresponding author: QU Xiaobo, senior engineer, Tel: 18962200729, E-mail: qubo6101@163.com;
LI Xi, professor, Tel: 13764420935, E-mail: lx_net@sina.com
作者简介: 屈小波,男,1983年生,高级工程师
图1  淬火变形测定用C型缺口试样及数值模拟结构模型5个特征位置点
图2  16MnCrS5齿轮钢相变参数测定
图3  16MnCrS5齿轮钢室温应力-应变曲线和计算所得500 ℃下流变应力曲线
图4  不同淬透性16MnCrS5齿轮钢的Jominy硬度曲线
图5  16MnCrS5齿轮钢原始试样及不同工艺热处理后试样显微组织的OM像
图6  淬火变形实验和数值模拟获得的16MnCrS5齿轮钢C型缺口试样淬火变形量随晶粒尺寸变化
图7  不同晶粒尺寸16MnCrS5齿轮钢在淬火过程中P3位置温度变化与组织应力变化数值模拟结果
图8  16MnCrS5齿轮钢经热轧处理后以不同方式冷却获得的带状组织形貌的OM像
图9  淬火变形实验和数值模拟获得的16MnCrS5齿轮钢C型缺口试样淬火变形量随带状组织等级变化
图10  16MnCrS5齿轮钢与TL4227齿轮钢Jominy硬度曲线
图11  16MnCrS5和TL4227齿轮钢淬火变形实验结果以及不同淬透性16MnCrS5齿轮钢淬火变形和淬火组织随淬透性变化数值模拟结果
图12  不同淬透性试样P5位置马氏体体积分数与组织应力随淬火持续时间变化数值模拟结果
图13  16MnCrS5齿轮钢的淬火变形分析
图14  淬火变形后16MnCrS5齿轮钢微观组织表征
1 Lin C, Zhao M J, Pan H, et al. Blending gear shift strategy design and comparison study for a battery electric city bus with AMT [J]. Energy, 2019, 185: 1
2 Arunachalam R, Krishnan P K, Muraliraja R. A review on the production of metal matrix composites through stir casting—Furnace design, properties, challenges, and research opportunities [J]. J. Manuf. Processes, 2019, 42: 213
3 Gupta K, Jain N K, Laubscher R F. Spark erosion machining of miniature gears: A critical review [J]. Int. J. Adv. Manuf. Technol., 2015, 80: 1863
4 Xiao N, Hui W J, Zhang Y J, et al. Hydrogen embrittlement behavior of a vacuum-carburized gear steel [J]. Acta Metall. Sin., 2021, 57: 977
doi: 10.11900/0412.1961.2020.00363
4 肖 娜, 惠卫军, 张永健 等. 真空渗碳处理齿轮钢的氢脆敏感性 [J]. 金属学报, 2021, 57: 977
5 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
6 Fang X R, Liu L, Xu H H, et al. Effect of pre-heat treatment before carburizing on distortion of gear shaft made of 17CrNiMo6 steel [J]. Heat Treat. Met., 2022, 47(3): 113
doi: 10.13251/j.issn.0254-6051.2022.03.022
6 方秀荣, 刘 留, 徐慧慧 等. 渗碳前预热处理对17CrNiMo6钢制齿轮轴畸变的影响 [J]. 金属热处理, 2022, 47(3): 113
doi: 10.13251/j.issn.0254-6051.2022.03.022
7 Zhang G Q. Microstructure and distortion of niobium-containing 18CrNiMo7-6 gear steel after high-temperature carburization [D]. Beijing: Central Iron & Steel Research Institute, 2021
7 张国强. 含铌18CrNiMo7-6齿轮钢高温渗碳组织和变形研究 [D]. 北京: 钢铁研究总院, 2021
8 Cao Y G. Study on hardenability, heat treatment distortion and fatigue property of carburized gear steels [D]. Beijing: Central Iron & Steel Research Institute, 2017
8 曹燕光. 渗碳齿轮钢淬透性及其热处理变形和疲劳性能研究 [D]. 北京: 钢铁研究总院, 2017
9 Liu J M. Research on abnormal deformation of automobile gear during carburizing and quenching heat treatment [J]. Met. Work., 2005, (11): 40
9 刘建明. 汽车齿轮渗碳淬火热处理异常变形的研究 [J]. 机械工人, 2005, (11): 40
10 An J M, Qin M, Ding Y. Effect of austenite grain size on heat treatment distortion automotive gear steels [J]. Heat Treat., 2013, 28(3): 48
10 安金敏, 覃 明, 丁 毅. 奥氏体晶粒度对汽车齿轮钢热处理畸变的影响 [J]. 热处理, 2013, 28(3): 48
11 Wang J, Dang S E, Fan Z J, et al. Microstructure homogenization of 17CrNiMo6 gear steel [J]. Heat Treat. Met., 2022, 47(11): 126
doi: 10.13251/j.issn.0254-6051.2022.11.022
11 王 杰, 党淑娥, 范子靖 等. 17CrNiMo6齿轮钢的组织均匀化 [J]. 金属热处理, 2022, 47(11): 126
12 Lai H Z. Research on forming mechanism of banded structure in 60Si2Mn spring flat steel and its influence on mechanical properties [D]. Ganzhou: Jiangxi University of Science and Technology, 2014
12 赖泓州. 60Si2Mn弹簧扁钢带状组织形成机理及对性能的影响研究 [D]. 赣州: 江西理工大学, 2014
13 Hua G P, Chao G Q, Shi J X. Formation and elimination of banded structure of 20CrNi2Mo steel [J]. Loco. Rolling Stock Technol., 2003, (5): 7
13 华公平, 晁国强, 侍继香. 20CrNi2Mo钢带状组织的形成与消除 [J]. 机车车辆工艺, 2003, (5): 7
14 Wang Z Y, Xing Z G, Wang H D, et al. The relationship between inclusions characteristic parameters and bending fatigue performance of 20Cr2Ni4A gear steel [J]. Int. J. Fatigue, 2022, 155: 106594
15 Wang B X, Liu X H, Wang G D. Dynamic recrystallisation behaviour and microstructural evolution in a Mn-Cr gear steel [J]. Mater. Sci. Technol., 2005, 21: 798
16 Huang J B. Research on the hardenability and phase transformation behavior of heavy transmission gear steel [D]. Beijing: Beijing Jiaotong University, 2017
16 黄金宝. 重载传动齿轮钢淬透性及相变变形规律的研究 [D]. 北京: 北京交通大学, 2017
17 Yang C, An J M, Huan Z Z. Numerical simulation of banded microstructure on quenching distortion in gear steel based on Deform [J]. Bao-Steel Technol., 2016, (3): 16
17 杨 超, 安金敏, 黄宗泽. 基于Deform的带状组织对齿轮钢淬火变形影响数值模拟 [J]. 宝钢技术, 2016, (3): 16
18 Seo H, Lee D G, Park J, et al. Quench hardening effect of gray iron brake discs on particulate matter emission [J]. Wear, 2023, 523: 204781
19 Zhang W H. A study on fabrication, heat-treatments and mechanical properties of V-Nb microalloyed gear steel [D]. Wuhan: Wuhan University of Science and Technology, 2007
19 张文汉. V-Nb微合金化齿轮钢及其热处理工艺和力学性能的研究 [D]. 武汉: 武汉科技大学, 2007
20 An X X, Tian Y, Wang H J, et al. Suppression of austenite grain coarsening by using Nb-Ti microalloying in high temperature carburizing of a gear steel [J]. Adv. Eng. Mater., 2019, 21: 1900132
21 O'Brien E C H C, Yeddu H K. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49: 157
doi: 10.1016/j.jmst.2019.10.044
22 Wang B, He Y P, Liu Y, et al. Mechanism of the microstructural evolution of 18Cr2Ni4WA steel during vacuum low-pressure carburizing heat treatment and its effect on case hardness [J]. Materials, 2020, 13: 2352
23 Wang Y B. A study on hardenability and band structure of 20CrMoH gear steel [D]. Kunmin: Kunming University of Science and Technology, 2010
23 王彦彬. 20CrMoH齿轮钢的淬透性及带状组织研究 [D]. 昆明: 昆明理工大学, 2010
24 Hu S B. A simple conversion formule of HV and HRC mutual [J]. J. Hubei Univ. Auto. Technol., 1992, (2): 64
24 胡树兵. 一种简单的洛氏C硬度与维氏硬度相互换算数学公式 [J]. 湖北汽车工业学院学报, 1992, (2): 64
25 Koistine D F, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metall., 1959, 7: 59
26 Denis S, Gautier E, Simon A, et al. Stress-phase-transformation interactions—Basic principles, modelling, and calculation of internal stresses [J]. Mater. Sci. Technol., 1985, 1: 805
27 Li H B, Zheng M Y, Tian W, et al. Flow stress constitutive equation of M50NiL gear steel based on Johnson-Cook model [J]. Mater. Mech. Eng., 2016, 40(11): 31
27 李红斌, 郑明月, 田 伟 等. 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程 [J]. 机械工程材料, 2016, 40(11): 31
28 Rego R, Löpenhaus C, Gomes J, et al. Residual stress interaction on gear manufacturing [J]. J. Mater. Process. Technol., 2018, 252: 249
29 Chen W, He X F, Yu W C, et al. Nano- and microhardness distribution in the carburized case of Nb-microalloyed gear steel [J]. J. Mater. Eng. Perform., 2020, 29: 4626
doi: 10.1007/s11665-020-04992-7
30 Du Y F. Effects of heat treatment and hot processing on banded structure characteristics and mechanical properties of PCrNi3MoV steel [D]. Taiyuan: North University of China, 2021
30 杜云飞. 热处理和热加工对PCrNi3MoV钢带状组织及力学性能的影响研究 [D]. 太原: 中北大学, 2021
31 Zhang Y T. Studies on mechanism and control of die quenching deformation for spiral bevel gear [D]. Chongqing: Chongqing University, 2017
31 张映桃. 螺旋锥齿轮模压淬火变形机理及控制研究 [D]. 重庆: 重庆大学, 2017
[1] 苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[5] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[6] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[7] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[8] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[9] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[10] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[11] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[12] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[13] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[14] 宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
[15] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.