|
|
TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展 |
张文彬1, 李小龙1, 郝硕1, 刘胜杰1, 蔡星周1, 陈雷1,2, 金淼1( ) |
1 燕山大学 机械工程学院 秦皇岛 066004 2 燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004 |
|
Microcrack Nucleation and Propagation of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si |
ZHANG Wenbin1, LI Xiaolong1, HAO Shuo1, LIU Shengjie1, CAI Xingzhou1, CHEN Lei1,2, JIN Miao1( ) |
1 College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China 2 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China |
引用本文:
张文彬, 李小龙, 郝硕, 刘胜杰, 蔡星周, 陈雷, 金淼. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展[J]. 金属学报, 2025, 61(4): 608-618.
Wenbin ZHANG,
Xiaolong LI,
Shuo HAO,
Shengjie LIU,
Xingzhou CAI,
Lei CHEN,
Miao JIN.
Microcrack Nucleation and Propagation of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si[J]. Acta Metall Sin, 2025, 61(4): 608-618.
1 |
Li Y, Zhong S X, Luo H, et al. Intermediate stacking fault and twinning induced cooperative strain evolution of dual phase in lean duplex stainless steels with excellent cryogenic strength-ductility combinations [J]. Mater. Sci. Eng., 2022, A831: 142347
|
2 |
Kang J Y, Kim H, Kim K I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114
|
3 |
Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
|
4 |
Srivastava A, Ghassemi-Armaki H, Sung H, et al. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling [J]. J. Mech. Phys. Solids, 2015, 78: 46
|
5 |
Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review [J]. Mater. Sci. Eng., 2020, A795: 140023
|
6 |
Su X F, Chen H R, Kennedy D, et al. Effects of interphase strength on the damage modes and mechanical behaviour of metal-matrix composites [J]. Composites, 1999, 30A: 257
|
7 |
Sun X, Choi K S, Soulami A, et al. On key factors influencing ductile fractures of dual phase (DP) steels [J]. Mater. Sci. Eng., 2009, A526: 140
|
8 |
Saai A, Hopperstad O S, Granbom Y, et al. Influence of volume fraction and distribution of martensite phase on the strain localization in dual phase steels [J]. Proc. Mater. Sci., 2014, 3: 900
|
9 |
Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
|
10 |
Motoyashiki Y, Brückner-Foit A, Sugeta A. Microstructural influence on small fatigue cracks in a ferritic-martensitic steel [J]. Eng. Fract. Mech., 2008, 75: 768
|
11 |
Xie Q G, Lian J H, Sun F W, et al. The lattice strain ratio in characterizing the grain-to-grain interaction effect and its specific insight on the plastic deformation of polycrystalline materials [J]. J. Strain Anal. Eng. Des., 2018, 53: 353
|
12 |
Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity [J]. Acta Mater., 2016, 121: 202
|
13 |
Du C, Hoefnagels J P M, Vaes R, et al. Plasticity of lath martensite by sliding of substructure boundaries [J]. Scr. Mater., 2016, 120: 37
|
14 |
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
|
15 |
Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
|
16 |
Paul S K. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel [J]. Mater. Des., 2013, 44: 397
|
17 |
Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume [J]. Comput. Mater. Sci., 2012, 65: 197
|
18 |
Cheloee Darabi A, Kadkhodapour J, Pourkamali Anaraki A, et al. Micromechanical modeling of damage mechanisms in dual-phase steel under different stress states [J]. Eng. Fract. Mech., 2021, 243: 107520
|
19 |
Yuenyong J, Uthaisangsuk V. Micromechanics based modelling of fatigue crack initiation of high strength steel [J]. Int. J. Fatigue, 2020, 139: 105762
|
20 |
Darabi A C, Guski V, Butz A, et al. A comparative study on mechanical behavior and damage scenario of DP600 and DP980 steels [J]. Mech. Mater., 2020, 143: 103339
|
21 |
Alaie A, Ziaei Rad S, Kadkhodapour J, et al. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation [J]. Mater. Sci. Eng., 2015, A638: 251
|
22 |
Zhang J C, Di H S, Deng Y G, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel [J]. Mater. Sci. Eng., 2015, A627: 230
|
23 |
Archie F, Li X L, Zaefferer S. Micro-damage initiation in ferrite-martensite DP microstructures: A statistical characterization of crystallographic and chemical parameters [J]. Mater. Sci. Eng., 2017, A701: 302
|
24 |
Moallemi M, Kim S J, Zarei-Hanzaki A, et al. Strain hardening analysis and deformation micromechanisms in high strength-high ductility metastable duplex stainless steels: Role of sustained stacking faults in the work hardening [J]. Mater. Charact., 2023, 197: 112662
|
25 |
Connolly D S, Kohar C P, Mishra R K, et al. A new coupled thermomechanical framework for modeling formability in transformation induced plasticity steels [J]. Int. J. Plast., 2018, 103: 39
|
26 |
Kim E Y, Woo W C, Heo Y U, et al. Effect of kinematic stability of the austenite phase on phase transformation behavior and deformation heterogeneity in duplex stainless steel using the crystal plasticity finite element method [J]. Int. J. Plast., 2016, 79: 48
|
27 |
Yasnikov I S, Vinogradov A, Estrin Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals [J]. Scr. Mater., 2014, 76: 37
|
28 |
Zhang H Y. Transformation-induced plasticity characteristics and temperature dependence of Cr20Mn3Cu2NiN lean duplex stainless steel [D]. Qinhuangdao: Yanshan University, 2023
|
28 |
张寰宇. Cr20Mn3Cu2NiN节约型双相不锈钢相变诱导塑性特征及其温度依赖性 [D]. 秦皇岛: 燕山大学, 2023
|
29 |
Gu G H, Seo M H, Suh D W, et al. Observation of multi-scale damage evolution in transformation-induced plasticity steel under bending condition [J]. Mater. Today Commun., 2023, 34: 105291
|
30 |
Kang J, Ososkov Y, Embury J D, et al. Digital image correlation studies for microscopic strain distribution and damage in dual phase steels [J]. Scr. Mater., 2007, 56: 999
|
31 |
Lian J H, Yang H Q, Vajragupta N, et al. A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale [J]. Comput. Mater. Sci., 2014, 94: 245
|
32 |
Han Q H, Kang Y L, Hodgson P D, et al. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel [J]. Scr. Mater., 2013, 69: 13
|
33 |
Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
|
34 |
Feng R, Zhang M H, Chen N L, et al. Finite element simulation of the effect of stress relaxation on strain-induced martensitic transformation [J]. Acta Metall. Sin., 2014, 50: 498
doi: 10.3724/SP.J.1037.2013.00559
|
34 |
冯 瑞, 张美汉, 陈乃录 等. 应力松弛对应变诱发马氏体相变影响的有限元模拟 [J]. 金属学报, 2014, 50: 498
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|