Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 608-618    DOI: 10.11900/0412.1961.2023.00149
  研究论文 本期目录 | 过刊浏览 |
TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展
张文彬1, 李小龙1, 郝硕1, 刘胜杰1, 蔡星周1, 陈雷1,2, 金淼1()
1 燕山大学 机械工程学院 秦皇岛 066004
2 燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
Microcrack Nucleation and Propagation of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si
ZHANG Wenbin1, LI Xiaolong1, HAO Shuo1, LIU Shengjie1, CAI Xingzhou1, CHEN Lei1,2, JIN Miao1()
1 College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
2 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
引用本文:

张文彬, 李小龙, 郝硕, 刘胜杰, 蔡星周, 陈雷, 金淼. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展[J]. 金属学报, 2025, 61(4): 608-618.
Wenbin ZHANG, Xiaolong LI, Shuo HAO, Shengjie LIU, Xingzhou CAI, Lei CHEN, Miao JIN. Microcrack Nucleation and Propagation of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si[J]. Acta Metall Sin, 2025, 61(4): 608-618.

全文: PDF(3378 KB)   HTML
摘要: 

TRIP型双相钢由于马氏体相变可以平衡强度、提高延展性和提高成形性而受到广泛关注。然而,随着马氏体相变的演化,钢中微观组织和相分布特征不断变化,从而导致复杂的微裂纹形核和扩展。本工作利用SEM、EBSD观察TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在拉伸至工程应变为55%时的微裂纹特征,分析由材料微观组织特征(相分布、晶界或相界路径等)导致的微裂纹形核及扩展规律。结果表明,微裂纹主要分布在初始奥氏体与铁素体相界位置,约占总微裂纹数的70%,铁素体相内晶界位置的微裂纹数约占总数的20%,初始奥氏体相内晶界位置的微裂纹数仅占总数的10%左右。微裂纹的形核易发生在多类型界面的交汇位置,主要的微裂纹形核位置可分为3类:相变马氏体/铁素体/残余奥氏体三相的交汇点,相变马氏体/铁素体相界和铁素体晶界交叉点,及相变马氏体/铁素体相界和初始奥氏体晶界交叉点。这些裂纹源在相界附近相变马氏体的影响下,易沿初始奥氏体与铁素体相界或与相界夹角较小(< 30°)的铁素体晶界扩展,而由于马氏体相变松弛了奥氏体相内的应力集中,导致微裂纹不易沿奥氏体晶界扩展。

关键词 TRIP型双相不锈钢微裂纹裂纹形核裂纹扩展相变马氏体    
Abstract

The transformation-induced plasticity (TRIP) effect considerably enhances the material properties of TRIP-assisted duplex steel due to the martensitic transformation. However, as martensitic transformation progresses, a complex microstructure forms from the intermixing of three phases (i.e., austenite, ferrite, and martensite) in the steel, which results in complex damage behavior, crack nucleation, and propagation characteristics. In this study, under engineering strain up to 55%, TRIP-assisted duplex stainless steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si was characterized to investigate microcrack characteristics. Herein, different types of microcracks were statistically categorized using SEM. Additionally, microcrack nucleation and propagation laws were analyzed in light of microscopic features characterized by EBSD, including phase distribution and grain and phase boundaries. The results show that the majority of microcracks are situated at the phase boundary between original austenite and ferrite, constituting about 70% of all microcracks. The number of microcracks located at the ferrite grain boundary accounts for about 20% of the total, while the number of microcracks located at the original austenite grain boundary accounts for only about 10% of the total. The interface between martensite and ferrite emerged as the primary site for microcrack nucleation. Furthermore, the study identifies three distinct microcrack nucleation sites influenced by various boundary types: at the intersection of martensite, ferrite, and austenite phases; at the junction of martensite/ferrite phase boundary and ferrite grain boundary; and at the cross point of martensite/ferrite phase boundary and the original austenite grain boundary. Therefore, microcracks might propagate along the original austenite/ferrite phase boundary or ferrite grain boundary with a smaller angle (< 30°) to the phase boundary. In addition, microcracks are less apt to propagate along the austenite grain boundary.

Key wordsTRIP-assisted duplex stainless steel    microcrack    crack nucleation    crack propagation    transformed martensite
收稿日期: 2023-04-03     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52275388, 52075474);河北省自然科学基金项目(E2022203206);燕山大学基础研究与创新人才培养项目(2021LGZD009, 2022BZZD002)
通讯作者: 金 淼,jmiao@ysu.edu.cn,主要从事先进金属材料的塑性成形理论与技术的研究
Corresponding author: JIN Miao, professor, Tel: (0335)8056775, E-mail: jmiao@ysu.edu.cn
作者简介: 张文彬,男,1994年生,博士生
图1  样品示意图及SEM观测区域和微裂纹分布位置
图2  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢初始组织特征
图3  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢的单调加载力学性能
图4  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢中微裂纹位置统计
图5  初始奥氏体/铁素体相界位置的微裂纹特征
图6  初始奥氏体/铁素体相界的微裂纹的形核并沿铁素体晶界扩展趋势
图7  初始奥氏体/铁素体相界上的微裂纹扩展特征
图8  铁素体晶界上的微裂纹特征
图9  初始奥氏体晶界的裂纹特征
图10  微裂纹形核特征示意图
图11  裂纹扩展路径示意图
图12  奥氏体/马氏体相界未形核裂纹原因示意图
1 Li Y, Zhong S X, Luo H, et al. Intermediate stacking fault and twinning induced cooperative strain evolution of dual phase in lean duplex stainless steels with excellent cryogenic strength-ductility combinations [J]. Mater. Sci. Eng., 2022, A831: 142347
2 Kang J Y, Kim H, Kim K I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114
3 Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
4 Srivastava A, Ghassemi-Armaki H, Sung H, et al. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling [J]. J. Mech. Phys. Solids, 2015, 78: 46
5 Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review [J]. Mater. Sci. Eng., 2020, A795: 140023
6 Su X F, Chen H R, Kennedy D, et al. Effects of interphase strength on the damage modes and mechanical behaviour of metal-matrix composites [J]. Composites, 1999, 30A: 257
7 Sun X, Choi K S, Soulami A, et al. On key factors influencing ductile fractures of dual phase (DP) steels [J]. Mater. Sci. Eng., 2009, A526: 140
8 Saai A, Hopperstad O S, Granbom Y, et al. Influence of volume fraction and distribution of martensite phase on the strain localization in dual phase steels [J]. Proc. Mater. Sci., 2014, 3: 900
9 Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
10 Motoyashiki Y, Brückner-Foit A, Sugeta A. Microstructural influence on small fatigue cracks in a ferritic-martensitic steel [J]. Eng. Fract. Mech., 2008, 75: 768
11 Xie Q G, Lian J H, Sun F W, et al. The lattice strain ratio in characterizing the grain-to-grain interaction effect and its specific insight on the plastic deformation of polycrystalline materials [J]. J. Strain Anal. Eng. Des., 2018, 53: 353
12 Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity [J]. Acta Mater., 2016, 121: 202
13 Du C, Hoefnagels J P M, Vaes R, et al. Plasticity of lath martensite by sliding of substructure boundaries [J]. Scr. Mater., 2016, 120: 37
14 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
15 Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
16 Paul S K. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel [J]. Mater. Des., 2013, 44: 397
17 Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume [J]. Comput. Mater. Sci., 2012, 65: 197
18 Cheloee Darabi A, Kadkhodapour J, Pourkamali Anaraki A, et al. Micromechanical modeling of damage mechanisms in dual-phase steel under different stress states [J]. Eng. Fract. Mech., 2021, 243: 107520
19 Yuenyong J, Uthaisangsuk V. Micromechanics based modelling of fatigue crack initiation of high strength steel [J]. Int. J. Fatigue, 2020, 139: 105762
20 Darabi A C, Guski V, Butz A, et al. A comparative study on mechanical behavior and damage scenario of DP600 and DP980 steels [J]. Mech. Mater., 2020, 143: 103339
21 Alaie A, Ziaei Rad S, Kadkhodapour J, et al. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation [J]. Mater. Sci. Eng., 2015, A638: 251
22 Zhang J C, Di H S, Deng Y G, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel [J]. Mater. Sci. Eng., 2015, A627: 230
23 Archie F, Li X L, Zaefferer S. Micro-damage initiation in ferrite-martensite DP microstructures: A statistical characterization of crystallographic and chemical parameters [J]. Mater. Sci. Eng., 2017, A701: 302
24 Moallemi M, Kim S J, Zarei-Hanzaki A, et al. Strain hardening analysis and deformation micromechanisms in high strength-high ductility metastable duplex stainless steels: Role of sustained stacking faults in the work hardening [J]. Mater. Charact., 2023, 197: 112662
25 Connolly D S, Kohar C P, Mishra R K, et al. A new coupled thermomechanical framework for modeling formability in transformation induced plasticity steels [J]. Int. J. Plast., 2018, 103: 39
26 Kim E Y, Woo W C, Heo Y U, et al. Effect of kinematic stability of the austenite phase on phase transformation behavior and deformation heterogeneity in duplex stainless steel using the crystal plasticity finite element method [J]. Int. J. Plast., 2016, 79: 48
27 Yasnikov I S, Vinogradov A, Estrin Y. Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals [J]. Scr. Mater., 2014, 76: 37
28 Zhang H Y. Transformation-induced plasticity characteristics and temperature dependence of Cr20Mn3Cu2NiN lean duplex stainless steel [D]. Qinhuangdao: Yanshan University, 2023
28 张寰宇. Cr20Mn3Cu2NiN节约型双相不锈钢相变诱导塑性特征及其温度依赖性 [D]. 秦皇岛: 燕山大学, 2023
29 Gu G H, Seo M H, Suh D W, et al. Observation of multi-scale damage evolution in transformation-induced plasticity steel under bending condition [J]. Mater. Today Commun., 2023, 34: 105291
30 Kang J, Ososkov Y, Embury J D, et al. Digital image correlation studies for microscopic strain distribution and damage in dual phase steels [J]. Scr. Mater., 2007, 56: 999
31 Lian J H, Yang H Q, Vajragupta N, et al. A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale [J]. Comput. Mater. Sci., 2014, 94: 245
32 Han Q H, Kang Y L, Hodgson P D, et al. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel [J]. Scr. Mater., 2013, 69: 13
33 Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
34 Feng R, Zhang M H, Chen N L, et al. Finite element simulation of the effect of stress relaxation on strain-induced martensitic transformation [J]. Acta Metall. Sin., 2014, 50: 498
doi: 10.3724/SP.J.1037.2013.00559
34 冯 瑞, 张美汉, 陈乃录 等. 应力松弛对应变诱发马氏体相变影响的有限元模拟 [J]. 金属学报, 2014, 50: 498
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[4] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[5] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[6] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[7] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[8] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[9] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[10] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[11] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[12] 佴启亮,董建新,张麦仓,姚志浩. 多组织因素对GH4738合金裂纹扩展速率的交互影响*[J]. 金属学报, 2016, 52(2): 151-160.
[13] 朱春雷, 李胜, 李海昭, 张继. 750 ℃热暴露对定向层片组织铸造TiAl合金室温拉伸塑性的影响[J]. 金属学报, 2014, 50(12): 1478-1484.
[14] 余龙, 宋西平, 张敏, 李宏良, 焦泽辉, 于慧臣. 高铌TiAl合金在疲劳蠕变作用下的裂纹萌生及扩展[J]. 金属学报, 2014, 50(10): 1253-1259.
[15] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.