Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1469-1477    DOI: 10.11900/0412.1961.2017.00172
  研究论文 本期目录 | 过刊浏览 |
镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响
张明1,2, 刘国权1,2(), 胡本芙1
1 北京科技大学材料科学与工程学院 北京 100083
2 北京科技大学钢铁共性技术协同创新中心 北京 100083
Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy
Ming ZHANG1,2, Guoquan LIU1,2(), Benfu HU1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(11463 KB)   HTML
摘要: 

采用单轴热压缩实验,研究了热等静压态镍基粉末高温合金FGH98的热加工变形行为。观察了形变过程中的合金组织演变,分析了显微组织不稳定性对热塑性的影响。热压缩实验在等温、恒应变速率下进行,真应变分别为0.2、0.4和0.6,温度分别为1060、1105、1138和1165 ℃,应变速率分别为0.01、0.1、1和10 s-1。结果表明,随着真应变的增加,合金的真应力-真应变曲线上出现硬化-软化-稳态流变阶段。在低于γ′相完全溶解温度、合金处在稳态流变或高应变条件下时,发生应变诱发动态再结晶并形成特殊形态的γ+γ′显微双相晶粒组织。晶粒尺寸细小,达到1.2~6.8 μm,合金显示良好的热塑性。分析了变形过程中晶粒尺寸和流变应力的变化和γ+γ′显微双相晶粒组织形成机理,并对热加工过程中显微组织调控的可能性进行讨论。

关键词 粉末高温合金热变形晶粒尺寸析出相    
Abstract

High alloying Ni-based powder metallurgy (PM) superalloys show excellent fatigue performance and damage tolerance properties, and good creep resistance at 750 ℃, and are used for advanced gas turbine disks and other hot components. The hot-working window of high alloying PM superalloy is narrow because of its poor workability. The formation of the γ+γ′ microduplex structure during the thermomechanical processing always results in a decrease in flow stress and a promotion of hot plasticity. However, the stability of the γ+γ′ microduplex structure has not been evaluated. The high temperature flow behavior of a Ni-based superalloy FGH98 prepared by hot isostatic pressing has been examined by means of uniaxial compression testing isothermally at 1060, 1105, 1138 and 1165 ℃ and at constant true strain rates between 0.01 and 10 s-1. The microstructural evolution and instabilities during plastic flow have been studied. Under all testing conditions, the as-hipped material exhibits flow hardening, flow softening and steady-state flow sequentially with the true strain increased. The dynamic recrystallization occurs and the γ+γ′ microduplex structures are generated when steady state flow or highest strains achieved at temperatures below the γ′ solvus. The formation of the γ+γ′ microduplex structures results in a remarkable decrease in grain size and a promotion of hot plasticity. The relationships between steady-state grain sizes and steady-state stresses during deformation and the formation mechanism of the γ+γ′ microduplex structure were analyzed. The possibility of the microstructure controlling during hot working was discussed.

Key wordsPM superalloy    hot deformation    grain size    precipitate
收稿日期: 2017-05-08     
ZTFLH:  TG132.32  
基金资助:国家高技术研究发展计划项目No.2015AA034201及国家自然科学基金项目No.51371030
作者简介:

作者简介 张 明,男,1988年生,博士生

引用本文:

张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy. Acta Metall Sin, 2017, 53(11): 1469-1477.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00172      或      https://www.ams.org.cn/CN/Y2017/V53/I11/1469

图1  晶粒尺寸测量示意图
图2  热等静压态FGH98合金显微组织与γ′相形貌
图3  不同热变形条件下热等静压态FGH98合金的真应力-真应变曲线
图4  形变温度为1105 ℃、应变速率(ε˙)为1 s-1时,FGH98合金在不同真应变下的显微组织
图5  真应变为0.6、应变速率为1 s-1时,FGH98合金在不同形变温度下的显微组织
图6  真应变为0.6、形变温度为1105 ℃时,FGH98合金在不同应变速率下的显微组织
图7  γ+γ′显微双相晶粒组织的TEM像
图8  应变诱发γ-γ′相界面迁移导致γ′相的溶解、再析出和长大
图9  不同真应变的热加工图
图10  真应变对晶粒尺寸、真应力和功率耗散因子的影响
图11  形变温度对晶粒尺寸、稳态应力和功率耗散因子的影响
图12  稳态应力和和稳态晶粒尺寸的关系
[1] Gessinger G H, Bomford M J.Powder metallurgy of superalloys[J]. Int. Metall. Rev., 1974, 19: 51
[2] Wilkinson N A.Technological considerations in the forging of superalloy rotor parts[J]. Met. Technol., 1977, 4: 346
[3] Immarigeon J P A, Van Drunen G, Wallace W. The hot working behaviour of Mar M200 superalloy compacts [A]. Superalloys 1976: Proceedings of the Third International Symposium[C]. Seven Springs, PA: TMS, 1976: 463
[4] Coyne J E.Microstructural control in titanium-and nickel-base forgings; An overview[J]. Met. Technol., 1977, 4: 337
[5] Semiatin S L, McClary K E, Rollett A D, et al. Plastic flow and microstructure evolution during thermomechanical processing of a PM nickel-base superalloy[J]. Metall. Mater. Trans., 2013, 44A: 2778
[6] Wu K, Liu G Q, Hu B F, et al.Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy[J]. Mater. Sci. Eng., 2011, A528: 4620
[7] Ning Y Q, Yao Z K, Li H, et al.High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy[J]. Mater. Sci. Eng., 2010, A527: 961
[8] Alniak M O, Bedir F.Modelling of deformation and microstructural changes in P/M René 95 under isothermal forging conditions[J]. Mater. Sci. Eng., 2006, A429: 295
[9] Liu Y H, Ning Y Q, Yao Z K, et al.Plastic deformation and dynamic recrystallization of a powder metallurgical nickel-based superalloy[J]. J. Alloys Compd., 2016, 675: 73
[10] He G A, Liu F, Si J Y, et al.Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps[J]. Mater. Des., 2015, 87: 256
[11] Zhang C, Zhang L W, Li M F, et al.Effects of microstructure and γ′ distribution on the hot deformation behavior for a powder metallurgy superalloy FGH96[J]. J. Mater. Res., 2014, 29: 2799
[12] Zhang H B, Zhang K F, Lu Z, et al.Hot deformation behavior and processing map of a γ′-hardened nickel-based superalloy[J]. Mater. Sci. Eng., 2014, A604: 1
[13] Wu K, Liu G Q, Hu B F, et al.Characterization of hot deformation behavior of a new Ni-Cr-Co based P/M superalloy[J]. Mater. Charact., 2010, 61: 330
[14] Zhang M J, Li F G, Wang S Y, et al.Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy[J]. Mater. Sci. Eng., 2010, A527: 6771
[15] Kandeil A Y, Immarigeon J P A, Wallace W, et al. Flow behaviour of Mar M200 powder compacts during isothermal forging[J]. Met. Sci., 1980, 14: 493
[16] Alniak M O, Bedir F.Change in grain size and flow strength in P/M René 95 under isothermal forging conditions[J]. Mater. Sci. Eng., 2006, B130: 254
[17] Kikuchi S, Ando S, Shu F, et al.Superplastic deformation and microstructure evolution in PM IN-100 superalloy[J]. J. Mater. Sci., 1990, 25: 4712
[18] Yu Q Y, Yao Z H, Dong J X.Deformation and recrystallization behavior of a coarse-grain, nickel-base superalloy Udimet720Li ingot material[J]. Mater. Charact., 2015, 107: 398
[19] Chen J Y, Dong J X, Zhang M C, et al.Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ′ phases[J]. Mater. Sci. Eng., 2016, A673: 122
[20] Zhang B J, Zhao G P, Zhang W Y, et al.Deformation mechanisms and microstructural evolution of γ+γ′ duplex aggregates generated during thermomechanical processing of nickel-base superalloys [A]. Proceedings of the 13th International Symposium on Superalloys[C]. Seven Springs, PA: TMS, 2016: 487
[21] Exner H E.Analysis of grain-and particle-size distributions in metallic materials[J]. Int. Metall. Rev., 1972, 17: 25
[22] Hu B F, Jin K S, Li H Y, et al.The interaction of recrystallizing interfaces with precipitates in a P/M nickel-base superalloy[J]. J. Univ. Sci. Eng. Beijing, 1993, 15: 14(胡本芙, 金开生, 李慧英等. FGH95合金再结晶界面与晶内析出γ′相的作用[J]. 北京科技大学学报, 1993, 15: 14)
[23] Menzies R G, Davies G J, Edington J W.Microstructural changes during recrystallization of powder-consolidated nickel-base superalloy IN-100[J]. Met. Sci., 1981, 15: 217
[24] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall. Trans., 1984, 15A: 1883
[25] Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. Int. Mater. Rev., 1998, 43: 243
[26] Immarigeon J A, Floyd P H.Microstructural instabilities during superplastic forging of a nickel-base superalloy compact[J]. Metall. Trans., 1981, 12A: 1177
[27] Lin Y C, Wu X Y, Chen X M, et al.EBSD study of a hot deformed nickel-based superalloy[J]. J. Alloys Compd., 2015, 640: 101
[28] Chen X M, Lin Y C, Wen D X, et al.Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation[J]. Mater. Des., 2014, 57: 568
[29] Menzies R G, Edington J W, Davies G J.Superplastic behaviour of powder-consolidated nickel-base superalloy IN-100[J]. Met. Sci., 1981, 15: 210
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[3] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[4] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[5] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[6] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[7] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[8] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[9] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[10] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[12] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[13] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[14] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.