Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1227-1238    DOI: 10.11900/0412.1961.2020.00007
  本期目录 | 过刊浏览 |
海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应
张守清1,2, 胡小锋1, 杜瑜宾1,2, 姜海昌1, 庞辉勇3, 戎利建1()
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 舞阳钢铁有限责任公司 平顶山 462500
Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform
ZHANG Shouqing1,2, HU Xiaofeng1, DU Yubin1,2, JIANG Haichang1, PANG Huiyong3, RONG Lijian1()
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Wuyang Iron and Steel Co. Ltd. , Pingdingshan 462500, China
引用本文:

张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
Shouqing ZHANG, Xiaofeng HU, Yubin DU, Haichang JIANG, Huiyong PANG, Lijian RONG. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. Acta Metall Sin, 2020, 56(9): 1227-1238.

全文: PDF(6696 KB)   HTML
摘要: 

采用OM、SEM、TEM、EBSD、拉伸和冲击等分析和检测技术,研究了工业生产的117 mm厚Ni-Cr-Mo-B超厚钢板在厚度方向上微观组织的变化及其对力学性能的影响。结果表明,从表层到芯部,超厚板的屈服强度逐渐降低,表层和芯部的屈服强度分别为798和718 MPa;延伸率变化不大,为20.0%~22.0%;然而超厚板的-60 ℃冲击功变化较大,其中表层、1/8T (T代表板厚)和芯部的冲击功分别为35、160和20 J,使得整个厚度方向上的冲击功变化曲线呈现“M”型。从表层到芯部,超厚板的板条宽度(198.7~500.6 nm)、界面碳化物尺寸(130.6~226.6 nm)和晶内碳化物尺寸(45.8~106.2 nm)均逐渐增加,芯部还存在一定的块状区,板条的细晶强化和碳化物的析出强化效果均减小,使得屈服强度从表层到芯部逐渐降低。从表层到芯部,有效晶粒尺寸先减小后增加,表层(2.2 μm)和芯部(2.7 μm)的有效晶粒尺寸较大,对解理裂纹扩展的阻碍作用较弱,使得表层和芯部的冲击功较低;而1/8T位置具有较小的有效晶粒尺寸(1.7 μm),对解理裂纹的阻碍作用较强,从而获得较高的冲击功。

关键词 Ni-Cr-Mo-B钢超厚板截面效应冲击功有效晶粒尺寸    
Abstract

With the increasing demand and exploitation depth for offshore oil and gas, offshore platforms are becoming larger and the performance requirements and size for offshore platform of ultra-heavy plates are also increasing. Due to the large plate thickness and the limitation of manufacturing techniques, inhomogeneous microstructures and mechanical properties along thickness direction are great challenges for offshore platform of ultra-heavy plates. In this work, variation of microstructure and its effect on mechanical properties for the 117 mm-thick Ni-Cr-Mo-B industrial ultra-heavy plate were investigated by means of OM, SEM, TEM and EBSD observation, in combination with the tensile and impact toughness test. The results show that yield strength reduces gradually from the surface (798 MPa) to the center (718 MPa) and elongation almost keeps constant around 20.0%~22.0% for the 117 mm-thick plate. It is noted that impact energy at -60 ℃ increases first from 35 J at the surface and reaches its peak 160 J at the depth of 1/8T (T—thickness of plate), and then drops to the minimum about 20 J at the center, which suggests that impact energy curve along the whole section varies sharply and exhibits like letter 'M'. Lath width, boundary carbide size and intragranular carbide size are all gradually increasing from the surface to the center, i.e., from 198.7 nm to 500.6 nm, 130.6 nm to 226.6 nm, 45.8 nm to 106.2 nm, respectively, and there are also some blocky areas at the center, all those indicate that refinement strengthening and precipitation strengthening would decrease, as well as the gradual decrease of yield strength. Also, from the surface to the center, effective grain size (EGS) decreases first and then increases. The surface and the center have larger EGS (2.2 μm and 2.7 μm, respectively), which indicates that they have weaker resistance to cleavage crack and exhibit lower impact energy. However, the 1/8T position has smaller EGS (1.7 μm) while obtains higher impact energy.

Key wordsNi-Cr-Mo-B steel    ultra-heavy plate    cross-section effect    impact energy    effective grain size
收稿日期: 2020-01-07     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2016YFB0300601);辽宁省"兴辽英才计划"项目(XLYC1907143);兵团重大科技项目(2017AA004-2)
作者简介: 张守清,男,1993年生,博士
图1  Ni-Cr-Mo-B超厚板力学性能样品和微观组织样品示意图
PositionCNiMnMoCrBSiNbVTiCuAlSPFe
Surface0.151.350.950.441.030.00070.170.0250.0450.020.0230.0350.0030.015Bal.
Center0.131.260.950.411.020.00110.170.0220.0410.020.0220.0310.0030.014Bal.
表1  Ni-Cr-Mo-B超厚板表层和芯部的化学成分 (mass fraction / %)
PositionType AType BType CType DType DS
CoarseFineCoarseFineCoarseFineCoarseFine
0T0000000.51.00
1/4T0000001.01.00
1/2T0000000.51.00.5
3/4T0000000.51.00
1T0000001.01.00
表2  Ni-Cr-Mo-B超厚板不同位置处的夹杂物评级
图2  Ni-Cr-Mo-B超厚板厚度方向的力学性能变化
图3  Ni-Cr-Mo-B超厚板6、19和58 mm处的原始奥氏体晶粒形貌
图4  Ni-Cr-Mo-B超厚板不同位置处的OM像(a) 1 mm;(b) 6 mm;(c) 11 mm;(d) 14 mm;(e) 19 mm;(f) 24 mm; (g) 27 mm;(h)53 mm;(i) 58 mm
图5  Ni-Cr-Mo-B超厚板6、19和58 mm处的SEM像
图6  Ni-Cr-Mo-B超厚板厚度方向显微组织占比的变化曲线
图7  Ni-Cr-Mo-B超厚板不同位置的晶界分布图Color online(a) 1 mm;(b) 6 mm;(c) 11 mm;(d) 19 mm;(e) 32 mm;(f) 58 mm
图8  Ni-Cr-Mo-B超厚板厚度方向有效晶粒尺寸的变化曲线
图9  Ni-Cr-Mo-B超厚板6、19和58 mm处的TEM像
图10  Ni-Cr-Mo-B超厚板1/8T位置冲击断口剖面的晶界分布图Color online
图11  Ni-Cr-Mo-B超厚板0T、1/8T和1/2T处的冲击断口SEM像
图12  Ni-Cr-Mo-B超厚板不同位置处冲击剖面的SEM像
图13  Ni-Cr-Mo-B超厚板不同位置处有效晶粒尺寸、单位初生裂纹长度和冲击功的关系
[1] Yang C F, Su H. Research and development of high performance shipbuilding and marine engineering steel [J]. Iron Steel, 2012, 47(12): 1
[1] (杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发 [J]. 钢铁, 2012, 47(12): 1)
[2] Tsuyama S. Thick plate technology for the last 100 years: A world leader in thermo mechanical control process [J]. ISIJ Int., 2015, 55: 67
doi: 10.2355/isijinternational.55.67
[3] Zhang J J. Medium and Heavy Plate Production [M]. Beijing: Metallurgical Industry Press, 2005: 1
[3] (张景进. 中厚板生产 [M]. 北京: 冶金工业出版社, 2005: 1)
[4] Wu T, Wu D Z, Ye J J, et al. Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform [J]. Wide Heavy Plate, 2015, 21(3): 1
[4] (吴 涛, 吴东召, 叶建军等. 自升式海洋平台齿条用177.8 mm厚度钢板的研制开发 [J]. 宽厚板, 2015, 21(3): 1)
[5] Gao Z Y. Study of hot deformtation behavior and microstructure evolution of HSLA ultra-heavy plate steel [D]. Beijing: University of Science and Technology Beijing, 2016
[5] (高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D]. 北京: 北京科技大学, 2016)
[6] Liu H B, Zhang H Q, Li J F. Thickness dependence of toughness in ultra-heavy low-alloyed steel plate after quenching and tempering [J]. Metals, 2018, 8: 628
doi: 10.3390/met8080628
[7] Wang X Y, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel [J]. Acta Metall. Sin., 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
[7] (王小勇, 潘 涛, 王 华等. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究 [J]. 金属学报, 2012, 48: 401)
[8] Liu D S, Cheng B G, Chen Y Y. Fine microstructure and toughness of low carbon copper containing ultra high strength NV-F690 heavy steel plate [J]. Acta Metall. Sin., 2012, 48: 334
[8] (刘东升, 程丙贵, 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性 [J]. 金属学报, 2012, 48: 334)
[9] Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A: 440
[10] Hwang B, Lee C G, Kim S J. Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels [J]. Metall. Mater. Trans., 2010, 42A: 717
[11] Kim S, Lee S, Lee B S. Effects of grain size on fracture toughness in transition temperature region of Mn-Mo-Ni low-alloy steels [J]. Mater. Sci. Eng., 2003, A359: 198
[12] Wang J. Study on structural heredity of 30Cr2Ni4MoV steel for steam turbine lp rotor of heavy forgings [D]. Qingdao: Shandong University of Science and Technology, 2011
[12] (王 健. 大型锻件汽轮机低压转子用30Cr2Ni4MoV钢组织遗传研究 [D]. 青岛: 山东科技大学, 2011)
[13] Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
[14] Furuhara T, Kawata H, Morito S, et al. Crystallography of upper bainite in Fe-Ni-C alloys [J]. Mater. Sci. Eng., 2006, A431: 228
[15] Morsdorf L, Tasan C C, Ponge D, et al. 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence [J]. Acta Mater., 2015, 95: 366
[16] Jiang Z H, Wang P, Li D Z, et al. The evolutions of microstructure and mechanical properties of 2.25Cr-1Mo-0.25V steel with different initial microstructures during tempering [J]. Mater. Sci. Eng., 2017, A699: 165
[17] Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
[18] Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel [J]. Mater. Sci. Eng., 2013, A559: 241
[19] Luo Z J, Shen J C, Su H, et al. Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels [J]. J. Iron Steel Res. Int., 2010, 17: 40
[20] Zheng Y X, Wang F M, Li C R, et al. Effect of microstructure and precipitates on mechanical properties of Cr-Mo-V Alloy steel with different austenitizing temperatures [J]. ISIJ Int., 2018, 58: 1126
doi: 10.2355/isijinternational.ISIJINT-2017-531
[21] Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels [J]. Metall. Mater. Trans., 1979, 10A: 861
[22] Kestenbach H J, Gallego J. On dispersion hardening of microalloyed hot strip steels by carbonitride precipitation in austenite [J]. Scr. Mater., 2001, 44: 791
doi: 10.1016/S1359-6462(00)00660-6
[23] Lee K H, Kim M C, Yang W J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels [J]. Mater. Sci. Eng., 2013, A565: 158
[24] Kang J, Li C N, Yuan G, et al. Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture [J]. Mater. Lett., 2016, 175: 157
doi: 10.1016/j.matlet.2016.04.007
[25] Mao G J, Cayron C, Cao R, et al. The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals [J]. Mater. Charact., 2018, 145: 516
doi: 10.1016/j.matchar.2018.09.012
[26] Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
[27] Brozzo P, Buzzichelli G, Mascanzoni A, et al. Microstructure and cleavage resistance of low-carbon bainitic steels [J]. Met. Sci., 1977, 11: 123
[28] Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
doi: 10.1016/j.scriptamat.2007.10.053
[1] 杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 1.4%CuHSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.
[2] 顾伟,李静媛,王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*[J]. 金属学报, 2016, 52(1): 51-59.
[3] 张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*[J]. 金属学报, 2014, 50(8): 913-920.
[4] 陈俊丹 莫文林 王培 陆善平. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193.