Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 967-975    DOI: 10.11900/0412.1961.2019.00010
  本期目录 | 过刊浏览 |
等通道角挤压制备超细晶纯Ti的腐蚀性能研究
李鑫1,2,董月成1,3,4(),淡振华1,3,常辉1,方志刚4,郭艳华1
1. 南京工业大学材料科学与工程学院/新材料研究院 南京 211816
2. 南京工业大学江苏先进无机功能复合材料协同创新中心 南京 211816
3. 海洋装备用金属材料及其应用国家重点实验室 鞍山 114000
4. 海军研究院 北京 100000
Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing
Xin LI1,2,Yuecheng DONG1,3,4(),Zhenhua DAN1,3,Hui CHANG1,Zhigang FANG4,Yanhua GUO1
1. College of Materials Science and Engineering/Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
3. State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114000, China
4. Naval Research Institute, Beijing 100000, China
全文: PDF(11271 KB)   HTML
摘要: 

通过等通道角挤压(ECAP)的方法制备了超细晶纯Ti,利用EBSD技术研究了2~4道次样品晶粒尺寸、基面织构强度和大小角度晶界的变化规律。同时,采用动电位极化和EIS的方法研究不同晶粒尺寸样品的耐模拟海水腐蚀性能。结果表明:经过2道次ECAP,原始粗晶纯Ti的晶粒尺寸和基面织构强度减小,小角度晶界分数急剧增加。随着挤压道次的增加,纯Ti的晶粒尺寸继续减小,基面织构强度先增大后减少,小角度晶界分数逐渐降低。相比于原始粗晶纯Ti,所有ECAP制备的超细晶纯Ti的腐蚀电流密度和腐蚀速率明显降低,极化电阻增大,表现出更加优异的耐海水腐蚀性能。另一方面,随着ECAP道次的增加,纯Ti的耐海水腐蚀性能并不是呈单调增加的关系,3道次试样的耐腐蚀性能最优,这主要归因于晶粒尺寸、基面织构和晶界特征分布的耦合影响,其中基面织构强度的影响占据主导地位。

关键词 纯Ti腐蚀性能晶粒尺寸织构晶界特征分布    
Abstract

Titanium alloy has extensive applications in the field of chemical, biomedical and marine engineering due to high specific strength and excellent corrosion resistance. Ultrafine-grained (UFG) and nanocrystalline (NC) materials with unique properties processed by severe plastic deformation are widely studied in recent decades. In comparison with large number researches on mechanical behavior of UFG/NC materials, corrosion resistance is rarely studied and results indicated inconsistent, even within the same alloy system. In this work, ultrafine-grained pure Ti was fabricated by equal channel angular pressing (ECAP) with 2~4 passes. Grain size, crystallographic texture and grain boundary character distribution of samples were characterized by EBSD. At the same time, dynamic potential polarization and EIS methods were used to study corrosion resistance in simulated seawater. Results showed that grain size and basal texture strength of pure Ti decreased after 2 ECAP passes, but the fraction of low angle grain boundary (LAGB) increased drastically. With increasing of extrusion passes, grain size and the fraction of LAGB decreased for samples, meanwhile, basal texture strength increased at first and then decreased. Electrochemical experiments indicated that all UFG titanium have better corrosion resistance than coarse one. On the other hand, it was founded that corrosion resistance didn't increased monotonously with the development of ECAP passes, and 3 ECAP passes displayed optimum. This could be attributed to the interaction of grain size, basal texture and grain boundary character distribution, and basal texture strength occupied the domination.

Key wordspure Ti    corrosion behavior    grain size    texture    grain boundary character distribution
收稿日期: 2019-01-15     
ZTFLH:  TG172.5  
基金资助:国防基础科研计划项目((No.JCKY08414C020));海洋装备用金属材料及其应用国家重点实验室开放基金项目((No.SKLMEA-K201807));中国博士后科学基金面上项目((No.2017M623392));江苏省研究生科研与实践创新计划项目((No.SJCX19_0324));江苏高校优势学科建设工程资助项目
通讯作者: 董月成     E-mail: dongyuecheng@njtech.edu.cn
Corresponding author: Yuecheng DONG     E-mail: dongyuecheng@njtech.edu.cn
作者简介: 李 鑫,男,1994年生,硕士生

引用本文:

李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
Xin LI, Yuecheng DONG, Zhenhua DAN, Hui CHANG, Zhigang FANG, Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing. Acta Metall Sin, 2019, 55(8): 967-975.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00010      或      https://www.ams.org.cn/CN/Y2019/V55/I8/967

图1  CG-Ti和等通道角挤压(ECAP) 2、3、4道次后UFG-Ti的EBSD图
图2  CG-Ti和ECAP 2、3、4道次后UFG-Ti的{0002}正极图
图3  CG-Ti和ECAP 2、3和4道次后UFG-Ti的晶界分布图和晶界取向差分布图
图4  CG-Ti和ECAP 2、3、4道次后UFG-Ti的极化曲线

Sample

Ecorr

V

Epit

V

ipass

μA·cm-2

icorr

μA·cm-2

R

mm·a-1

CG-Ti-0.2710.0060.8980.8990.00781
ECAP 2P-0.222-0.0150.2930.1860.00162
ECAP 3P-0.2860.1350.1580.1360.00118
ECAP 4P-0.2130.1290.2190.1790.00155
表1  CG-Ti和ECAP 2、3、4道次后UFG-Ti的电化学腐蚀性能
图5  CG-Ti和ECAP 2、3、4道次后UFG-Ti在3.5%NaCl溶液中的Nyquist图
图6  用于分析EIS数据的等效电路

Sample

Rs

Ω·cm2

CPE

10-5 S·sn·cm2

n

Rp

105 Ω·cm2

Chi-squared

CG-Ti4.6413.9480.8712.5590.004322
ECAP 2P4.3081.9640.9074.2490.001037
ECAP 3P4.6851.8870.91116.6200.001892
ECAP 4P4.3251.7680.8565.6360.001116
表2  EIS拟合的CG-Ti和ECAP 2、3、4道次后UFG-Ti电化学参数
[1] Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
[2] Qiao Z, Liu X Y, Zhao X C, et al. Effect of annealing temperature on microstructure and properties of ultra-fine grained commercial purity titanium by ECAP+CR [J]. Rare Met. Mater. Eng., 2017, 46: 2618
[2] (乔 珍, 刘晓燕, 赵西成等. 退火温度对ECAP+CR制备的超细晶钛组织及性能影响 [J]. 稀有金属材料与工程, 2017, 46: 2618)
[3] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
[4] Fattah-Alhosseini A, Attarzadeh F R, Vakili-Azghandi M. Effect of multi-pass friction stir processing on the electrochemical and corrosion behavior of pure titanium in strongly acidic solutions [J]. Metall. Mater. Trans., 2017, 48A: 403
[5] Gu Y X, Ma A B, Jiang J H, et al. Research progress of ultrafine-grained pure titanium produced by equal-channel angular pressing [J]. Rare Met. Mater. Eng., 2017, 46: 3639
[5] (谷艳霞, 马爱斌, 江静华等. 等通道转角挤压法制备超细晶纯钛的研究进展(英文) [J]. 稀有金属材料与工程, 2017, 46: 3639)
[6] Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci., 2006, 51: 881
[7] Langdon T G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement [J]. Acta Mater., 2013, 61: 7035
[8] op't Hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2010, 10: 579
[9] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
[10] Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview [J]. Mater. Trans., 2016, 57: 559
[11] Estrin Y, Vinogradov A. Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview [J]. Int. J. Fatigue, 2010, 32: 898
[12] Rodriguez-Calvillo P, Cabrera J M. Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing [J]. Mater. Sci. Eng., 2015, A625: 311
[13] Ravisankar B, Park J K. ECAP of commercially pure titanium: A review [J]. Trans. Indian Inst. Met., 2008, 61: 51
[14] Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
[15] Nie M Y, Wang C T, Qu M H, et al. The corrosion behaviour of commercial purity titanium processed by high-pressure torsion [J]. J. Mater. Sci., 2014, 49: 2824
[16] Garbacz H, Pisarek M, Kurzyd?owski K J. Corrosion resistance of nanostructured titanium [J]. Biomol. Eng., 2007, 24: 559
[17] Balyanov A, Kutnyakova J, Amirkhanova N A, et al. Corrosion resistance of ultra fine-grained Ti [J]. Scr. Mater., 2004, 51: 225
[18] Fattah-Alhosseini A, Vakili-Azghandi M, Sheikhi M, et al. Passive and electrochemical response of friction stir processed pure titanium [J]. J. Alloys Compd., 2017, 704: 499
[19] Fattah-Alhosseini A, Imantalab O, Ansari G. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution [J]. Mater. Sci. Eng., 2017, C71: 827
[20] Gurao N P, Manivasagam G, Manivasagam P, et al. Effect of texture and grain size on bio-corrosion response of ultrafine-grained titanium [J]. Metall. Mater. Trans., 2013, 44A: 5602
[21] Raducanu D, Vasilescu E, Cojocaru V D, et al. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1421
[22] Matsuki K, Aida T, Takeuchi T, et al. Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing [J]. Acta Mater., 2000, 48: 2625
[23] Liu X C, An C Q. Corrosion Science of Metal [M]. Beijing: National Defense Industry Press, 2002: 15
[23] (刘秀晨, 安成强. 金属腐蚀学 [M]. 北京: 国防工业出版社, 2002: 15)
[24] ?omakl? O, Yaz?c? M, Yetim T, et al. The effect of calcination temperatures on structural and electrochemical properties of TiO2 film deposited on commercial pure titanium [J]. Surf. Coat. Technol., 2016, 285: 298
[25] Jin L, Cui W F, Song X, et al. Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2529
[26] Yang D S, Dong Y C, Chang H, et al. Corrosion behavior of ultrafine-grained copper processed by equal channel angular pressing in simulated sea water [J]. Mater. Corros., 2018, 69: 1455
[27] Liu B, Zhou Q, Qu R F, et al. Effect of microstructure on corrosion resistance of CP-Ti and Ti-0.2Pd alloy [J]. Chin. J. Nonferrous Met., 2015, 25: 959
[27] (刘 冰, 周 清, 瞿瑞锋等. CP-Ti和Ti-0.2Pd合金的显微组织对其耐蚀性的影响 [J]. 中国有色金属学报, 2015, 25: 959)
[28] Sotniczuk A, Kuczyńska-Zem?a D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing [J]. Corros. Sci., 2019, 147: 342
[29] Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
[30] Sotniczuk A, Kuczyńska D, Kubacka D, et al. Influence of nanostructure on titanium corrosion resistance in fluoridated medium [J]. Mater. Sci. Technol., 2019, 35: 288
[31] Ivanov I V, Thoemmes A, Kashimbetova A A. The influence of the crystallographic texture of titanium on its corrosion resistance in biological media [J]. Key Eng. Mater., 2018, 769: 42
[32] Gode C, Attarilar S, Eghbali B, et al. Electrochemical behavior of equal channel angular pressed titanium for biomedical application [A]. AIP Conference Proceedings [C]. Fethiye: AIP Publishing LLC, 2015: 020041
[33] Gu Y X, Ma A B, Jiang J H, et al. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing [J]. Mater. Charact., 2018, 138: 38
[34] Hoseini M, Shahryari A, Omanovic S, et al. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing [J]. Corros. Sci., 2009, 51: 3064
[35] Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control [J]. Corros. Sci., 2011, 53: 1880
[36] Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel [J]. Acta Mater., 2006, 54: 5179
[37] Qarni M J, Sivaswamy G, Rosochowski A, et al. On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP) [J]. Mater. Sci. Eng., 2017, A699: 31
[38] Zhao Z B, Wang Q J, Liu J R, et al. Characterizations of microstructure and crystallographic orientation in a near-α titanium alloy billet [J]. J. Alloys Compd., 2017, 712: 179
[1] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[2] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[3] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[4] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[5] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[6] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[7] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[8] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[9] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[10] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[11] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[12] 王丽娜, 杨平, 李凯, 崔凤娥, 毛卫民. 高锰TRIP钢冷轧以及α'-M逆转变过程的相变和织构演变[J]. 金属学报, 2018, 54(12): 1756-1766.
[13] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[14] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[15] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.