|
|
等通道角挤压制备超细晶纯Ti的腐蚀性能研究 |
李鑫1,2,董月成1,3,4( ),淡振华1,3,常辉1,方志刚4,郭艳华1 |
1. 南京工业大学材料科学与工程学院/新材料研究院 南京 211816 2. 南京工业大学江苏先进无机功能复合材料协同创新中心 南京 211816 3. 海洋装备用金属材料及其应用国家重点实验室 鞍山 114000 4. 海军研究院 北京 100000 |
|
Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing |
Xin LI1,2,Yuecheng DONG1,3,4( ),Zhenhua DAN1,3,Hui CHANG1,Zhigang FANG4,Yanhua GUO1 |
1. College of Materials Science and Engineering/Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing 211816, China 2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China 3. State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114000, China 4. Naval Research Institute, Beijing 100000, China |
引用本文:
李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
Xin LI,
Yuecheng DONG,
Zhenhua DAN,
Hui CHANG,
Zhigang FANG,
Yanhua GUO.
Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. Acta Metall Sin, 2019, 55(8): 967-975.
[1] | Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397 | [2] | Qiao Z, Liu X Y, Zhao X C, et al. Effect of annealing temperature on microstructure and properties of ultra-fine grained commercial purity titanium by ECAP+CR [J]. Rare Met. Mater. Eng., 2017, 46: 2618 | [2] | (乔 珍, 刘晓燕, 赵西成等. 退火温度对ECAP+CR制备的超细晶钛组织及性能影响 [J]. 稀有金属材料与工程, 2017, 46: 2618) | [3] | Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201 | [4] | Fattah-Alhosseini A, Attarzadeh F R, Vakili-Azghandi M. Effect of multi-pass friction stir processing on the electrochemical and corrosion behavior of pure titanium in strongly acidic solutions [J]. Metall. Mater. Trans., 2017, 48A: 403 | [5] | Gu Y X, Ma A B, Jiang J H, et al. Research progress of ultrafine-grained pure titanium produced by equal-channel angular pressing [J]. Rare Met. Mater. Eng., 2017, 46: 3639 | [5] | (谷艳霞, 马爱斌, 江静华等. 等通道转角挤压法制备超细晶纯钛的研究进展(英文) [J]. 稀有金属材料与工程, 2017, 46: 3639) | [6] | Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci., 2006, 51: 881 | [7] | Langdon T G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement [J]. Acta Mater., 2013, 61: 7035 | [8] | op't Hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2010, 10: 579 | [9] | Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579 | [10] | Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview [J]. Mater. Trans., 2016, 57: 559 | [11] | Estrin Y, Vinogradov A. Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview [J]. Int. J. Fatigue, 2010, 32: 898 | [12] | Rodriguez-Calvillo P, Cabrera J M. Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing [J]. Mater. Sci. Eng., 2015, A625: 311 | [13] | Ravisankar B, Park J K. ECAP of commercially pure titanium: A review [J]. Trans. Indian Inst. Met., 2008, 61: 51 | [14] | Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005 | [15] | Nie M Y, Wang C T, Qu M H, et al. The corrosion behaviour of commercial purity titanium processed by high-pressure torsion [J]. J. Mater. Sci., 2014, 49: 2824 | [16] | Garbacz H, Pisarek M, Kurzyd?owski K J. Corrosion resistance of nanostructured titanium [J]. Biomol. Eng., 2007, 24: 559 | [17] | Balyanov A, Kutnyakova J, Amirkhanova N A, et al. Corrosion resistance of ultra fine-grained Ti [J]. Scr. Mater., 2004, 51: 225 | [18] | Fattah-Alhosseini A, Vakili-Azghandi M, Sheikhi M, et al. Passive and electrochemical response of friction stir processed pure titanium [J]. J. Alloys Compd., 2017, 704: 499 | [19] | Fattah-Alhosseini A, Imantalab O, Ansari G. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution [J]. Mater. Sci. Eng., 2017, C71: 827 | [20] | Gurao N P, Manivasagam G, Manivasagam P, et al. Effect of texture and grain size on bio-corrosion response of ultrafine-grained titanium [J]. Metall. Mater. Trans., 2013, 44A: 5602 | [21] | Raducanu D, Vasilescu E, Cojocaru V D, et al. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1421 | [22] | Matsuki K, Aida T, Takeuchi T, et al. Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing [J]. Acta Mater., 2000, 48: 2625 | [23] | Liu X C, An C Q. Corrosion Science of Metal [M]. Beijing: National Defense Industry Press, 2002: 15 | [23] | (刘秀晨, 安成强. 金属腐蚀学 [M]. 北京: 国防工业出版社, 2002: 15) | [24] | ?omakl? O, Yaz?c? M, Yetim T, et al. The effect of calcination temperatures on structural and electrochemical properties of TiO2 film deposited on commercial pure titanium [J]. Surf. Coat. Technol., 2016, 285: 298 | [25] | Jin L, Cui W F, Song X, et al. Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2529 | [26] | Yang D S, Dong Y C, Chang H, et al. Corrosion behavior of ultrafine-grained copper processed by equal channel angular pressing in simulated sea water [J]. Mater. Corros., 2018, 69: 1455 | [27] | Liu B, Zhou Q, Qu R F, et al. Effect of microstructure on corrosion resistance of CP-Ti and Ti-0.2Pd alloy [J]. Chin. J. Nonferrous Met., 2015, 25: 959 | [27] | (刘 冰, 周 清, 瞿瑞锋等. CP-Ti和Ti-0.2Pd合金的显微组织对其耐蚀性的影响 [J]. 中国有色金属学报, 2015, 25: 959) | [28] | Sotniczuk A, Kuczyńska-Zem?a D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing [J]. Corros. Sci., 2019, 147: 342 | [29] | Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559 | [30] | Sotniczuk A, Kuczyńska D, Kubacka D, et al. Influence of nanostructure on titanium corrosion resistance in fluoridated medium [J]. Mater. Sci. Technol., 2019, 35: 288 | [31] | Ivanov I V, Thoemmes A, Kashimbetova A A. The influence of the crystallographic texture of titanium on its corrosion resistance in biological media [J]. Key Eng. Mater., 2018, 769: 42 | [32] | Gode C, Attarilar S, Eghbali B, et al. Electrochemical behavior of equal channel angular pressed titanium for biomedical application [A]. AIP Conference Proceedings [C]. Fethiye: AIP Publishing LLC, 2015: 020041 | [33] | Gu Y X, Ma A B, Jiang J H, et al. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing [J]. Mater. Charact., 2018, 138: 38 | [34] | Hoseini M, Shahryari A, Omanovic S, et al. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing [J]. Corros. Sci., 2009, 51: 3064 | [35] | Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control [J]. Corros. Sci., 2011, 53: 1880 | [36] | Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel [J]. Acta Mater., 2006, 54: 5179 | [37] | Qarni M J, Sivaswamy G, Rosochowski A, et al. On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP) [J]. Mater. Sci. Eng., 2017, A699: 31 | [38] | Zhao Z B, Wang Q J, Liu J R, et al. Characterizations of microstructure and crystallographic orientation in a near-α titanium alloy billet [J]. J. Alloys Compd., 2017, 712: 179 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|