Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 777-783    DOI: 10.11900/0412.1961.2014.00678
  本期目录 | 过刊浏览 |
超细晶粒钢中晶粒尺寸对塑性的影响模型*
刘觐1,朱国辉1,2()
2 安徽工业大学冶金工程学院, 马鞍山243000
MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS
Jin LIU1,Guohui ZHU1,2()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243000
全文: PDF(1113 KB)   HTML
摘要: 

以作者前期提出的位错塞积模型为基础, 结合断裂强度与晶粒尺寸的关系, 建立了晶粒细化导致超细晶粒钢总伸长率降低的临界晶粒尺寸的计算模型. 以晶粒尺寸从10 mm减小到0.2 mm为例, 计算结果表明, 钢的总塑性伸长率随着晶粒尺寸的减小首先呈现增加的趋势, 但是当晶粒尺寸减小到大约2.5 mm后, 随着晶粒尺寸的减小, 钢的总伸长率不仅不再增加, 反而出现了显著的降低, 这一结果较好地吻合了近期超细晶粒材料研究的实验现象. 本工作的研究说明, 导致超细晶粒钢伸长率降低的主要机制在于当晶粒细化到一定程度后, 晶界对位错源开动的阻力增大, 由此导致的可动位错数目显著降低使得应变量显著减少.

关键词 塑性超细晶粒晶粒尺寸位错塞积位错源    
Abstract

Based on our earlier preliminary work, a model was developed for prediction of the critical grain size where the plasticity would be decreased as the grain refined. In the model the effect of grain size on the fracture strength was combined. The prediction of the model exhibited that in the range of grain size of 10 mm to 0.2 mm as an example, the total elongation of the steels would be firstly increased. But when the grain size was refined to 2.5 mm and below, the total elongation of the steels was not increased but decreased sharply, which was good agreement with the experimental results published recently. Present work illustrated that the dominant mechanism of the elongation decreased in the ultra-fine grain size materials is due to increase in resistance force of grain boundaries on the dislocation sources resulting in the difficulty of activation of dislocation movements. Its expression would be the decrease of the plastic strain in macro-level.

Key wordsplasticity    ultrafine grain size    grain size    dislocation pile-up    dislocation source
    
基金资助:*国家自然科学基金项目51071026和教育部留学回国人员科研启动基金项目资助

引用本文:

刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
Jin LIU, Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS. Acta Metall Sin, 2015, 51(7): 777-783.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00678      或      https://www.ams.org.cn/CN/Y2015/V51/I7/777

图1  多晶体材料的断裂强度 σf 随晶粒尺寸d的变化
图2  单个晶粒中的位错塞积示意图
图3  相应断裂强度下单个晶粒的位移量 Df0 随d的变化曲线
图4  晶界阻碍Frank-Read源(FR源)增殖产生位错的示意图
图5  外加应力分别为616 MPa, 1946 MPa和相应的断裂 强度时, 多晶体中FR源的可开动几率Ff随d的变化关系曲线
图6  钢的总塑性伸长率ef随d的变化关系曲线
图7  超细晶粒钢的均匀伸长率eu或总伸长率ef随d的变化关系的实验数据[5,6,9,37~42]
[1] Kim Y M, Kim S K, Lim Y J, Kim N J. ISIJ Int, 2002; 42: 1571
[2] Zhao M C, Shan Y Y, Xiao F R, Yang K, Li Y H. Mater Lett, 2002; 57: 141
[3] Okatsu M, Shikanai N, Kondo J. JFE Tech Rep, 2008; 12: 8
[4] Ishikawa N, Shikanai N, Kondo J. JFE Tech Rep, 2008; 12: 15
[5] Park K T, KimY S, Lee J G, Shin D H. Mater Sci Eng, 2000; A293: 165
[6] Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[7] Kumar B R, Sharma S, Kashyap B P, Prabhu N. Mater Des, 2015; 68: 63
[8] Song R, Ponge D, Raabe D. Scr Mater, 2005; 52: 1075
[9] Lee T, Koyama M, Tsuzaki K, Lee Y H, Lee C S. Mater Lett, 2012; 75: 169
[10] Lee T, Park C H, Lee D, Lee C S. Mater Sci Eng, 2011; A528: 6558
[11] Hu T, Ma K, Topping T D, Saller B, Yousefiani A, Schoenung J M, Lavernia E J. Scr Mater, 2014; 78-79: 25
[12] Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1
[13] Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[14] Zhuang Z, Cui Y N, Gao Y, Liu Z L. Adv Mech, 2011; 41: 647 (庄 茁, 崔一南, 高 原, 柳占立. 力学进展, 2011; 41: 647)
[15] Rao S I, Dimiduk D M, Parthasarathy T A, Uchic M D, Tang M, Woodward C. Acta Mater, 2008; 56: 3245
[16] Liu J, Zhu G H, Mao W M, Subramanian S V. Mater Sci Eng, 2014; A607: 302
[17] Stroh A N. Adv Phys, 1957; 6: 418
[18] Smith E. Acta Metall, 1966; 14: 985
[19] McMahon C J, Cohen M. Acta Metall, 1965; 13: 591
[20] Knott J F. Fundamentals of Fracture Mechanics. New York: John Wiley-Halsted Press, 1973: 98
[21] Lin T, Evans A G, Ritchie R O. Metall Trans, 1987; 18A: 641
[22] Curry D A, King J E. Met Sci, 1978; 12: 247
[23] Yu Y N,Yang P,Qiang W J,Chen L. Fundament of Materials Science. Beijing: Higher Education Press, 2006: 537 (余永宁,杨 平,强文江,陈 冷. 材料科学基础. 北京: 高等教育出版社, 2006: 537)
[24] Wu S J, Davis C L. Mater Sci Eng, 2004; A387-389: 456
[25] Sato S, Wagatsuma K, Suzuki S, Kumagai M, Imafuku M, Tashiro H, Kajiwara K, Shobu T. Mater Charact, 2013; 83: 152
[26] Veistinen M K, Lindroos V K. Scr Metall, 1984; 18: 185
[27] Deng W, Gao X M, Qin X M, Zhao D W, Du L X, Wang G D. Acta Metall Sin, 2010; 46: 533 (邓 伟, 高秀梅, 秦小梅, 赵德文, 杜林秀, 王国栋. 金属学报, 2010; 46: 533)
[28] Yang P. Electron Back Scattering Diffraction Technique and its Application. Beijing: Metallurgical Industry Press, 2007: 157 (杨 平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 157)
[29] Zhu G, Mao W, Yu Y. Scr Mater, 2000; 42: 37
[30] Mao W M, Chen L, Yu Y N. Chin Sci Bull, 2002; 47: 1540 (毛卫民, 陈 冷, 余永宁. 科学通报, 2002; 47: 1540)
[31] Chin G Y. Metall Trans, 1972; 3: 2213
[32] Franciosi P. Acta Metall, 1983; 31: 1331
[33] Eshelby J D, Frank F C, Nabarro F R N. Philos Mag, 1951; 742: 351
[34] Gao H L. Pipeline Steel and Pipeline Pipe. Beijing: China Petrochemical Press, 2012: 8 (高惠临. 管线钢与管线钢管. 北京: 中国石化出版社, 2012: 8)
[35] Ohashi T, Kawamukai M, Zbib H. Int J Plast, 2007; 23: 897
[36] Cheng C, Jie M, Chan L, Chow C L. Int J Mech Sci, 2009; 49: 217
[37] Zhao M, Yin F, Hanamura T, Nagai K, Atrens A. Scr Mater, 2007; 57: 857
[38] Hanamura T, Yin F, Nagai K. ISIJ Int, 2004; 44: 610
[39] Park K T, Han S Y, ShinD H, LeeY K, Lee K J, Lee K S. ISIJ Int, 2004; 44: 1057
[40] Song R, Pong D, Raabe D. Acta Mater, 2005; 53: 4881
[41] Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi S M. Mater Lett, 2010; 64: 15
[42] Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[3] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[4] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[5] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[6] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[7] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[8] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[9] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[10] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[11] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[12] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[13] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[14] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[15] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.