Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 161-170    DOI: 10.11900/0412.1961.2019.00193
  研究论文 本期目录 | 过刊浏览 |
W含量对一种高W镍基高温合金显微组织的影响
华涵钰1,2,谢君1(),舒德龙1,侯桂臣1,盛乃成1,于金江1,崔传勇1,孙晓峰1,周亦胄1
1. 中国科学院金属研究所 沈阳 110016
2. 东北大学冶金学院 沈阳 110819
Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content
HUA Hanyu1,2,XIE Jun1(),SHU Delong1,HOU Guichen1,Naicheng SHENG1,YU Jinjiang1,CUI Chuanyong1,SUN Xiaofeng1,ZHOU Yizhou1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
Hanyu HUA, Jun XIE, Delong SHU, Guichen HOU, SHENG Naicheng, Jinjiang YU, Chuanyong CUI, Xiaofeng SUN, Yizhou ZHOU. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. Acta Metall Sin, 2020, 56(2): 161-170.

全文: PDF(23570 KB)   HTML
摘要: 

通过OM、SEM和XRD对高W镍基高温合金进行组织观察与分析,研究了W含量对镍基高温合金凝固组织的影响规律。结果表明,当W含量为14% (质量分数,下同)时,镍基合金中无α-W相析出。当W含量高于16%时,合金凝固期间可析出α-W,并且随W含量提高,合金的晶粒尺寸由1.04 mm减小至0.17 mm,共晶含量由6%增至10%;W含量对在枝晶间/枝晶干内的γ'相尺寸及形态无明显影响。由于α-W的析出温度较高,在凝固期间首先析出,并在残余液相收缩作用下,α-W向液相核心处发生转移并长大;同时α-W可作为异质形核的核心,降低枝晶形核的临界形核功,使18%W合金获得较小的晶粒尺寸。此外,在不同取向枝晶汇聚生长的作用下,残余液相中Al、Ti等元素形成较高的浓度梯度而发生共晶转变,这是18%W合金中共晶含量较高的主要原因。

关键词 高W镍基合金α-W晶粒尺寸共晶    
Abstract

Nickel base superalloys are widely used in the preparation of hot end parts for aircraft engines because of their good comprehensive mechanical properties, oxidation resistance and structural stability. It's strengthened mainly by solid solution strengthening, γ' phase strengthening and carbide strengthening. High alloying is one of the main methods to improve the solid solution strengthening level of nickel base superalloys, where the element W is an efficient alloying element with low price. The control of the W content is extremely important for high W content nickel base superalloys. However, there are few reports on the influence of W content on the microstructure of high W alloy. According to this background, by means of OM, SEM observation and XRD analysis, the influence of W content on the solidified microstructure in nickel base superalloy have been investigated in this work. Results show that when the W content is about 14% (mass fraction, the same below), there is no α-W phase being precipitated in the alloy. While as the content of W is higher than 16%, α-W could be precipitated during the solidification. On another hand, the grain size of the alloy decreases from 1.04 mm to 0.17 mm and the volume fraction of eutectic increases from 6% to 10% with the increase of the W content. While the content of W has no obvious effect on the sizes and morphologies of γ' phase in the dendrite and inter-dendrite areas. During solidification, the α-W phase will be first precipitated due to its higher precipitation temperature, and the shrinkage of the residual liquid phase may cause the shift and growth of the α-W to the core of the liquid phase. The α-W could be as the core of the heterogeneous nucleation to reduce the critical nucleation energy, which is the main reason that the grain size of the 18%W alloy is smaller. During the growth of the dendrites with various orientations, the concentration of Al and Ti in the residual liquid phase may have a higher concentration gradient to cause the occurrence of eutectic transformation, which is the main reason that there is a higher volume fraction of eutectic in 18%W alloy.

Key wordshigh W nickel base alloy    α-W    grain size    eutectic
收稿日期: 2019-06-13     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(51701212);国家自然科学基金项目(51571196);国家自然科学基金项目(51771191)
作者简介: 华涵钰,男,1995年生,硕士生
No.AlTiCrCoNbHfWCNi
1615721140.1Bal.
2615721160.1Bal.
3615721180.1Bal.
表1  镍基高温合金试样名义成分表 (mass fraction / %)
图1  不同W含量镍基高温合金的XRD谱
图2  不同W含量镍基高温合金的OM像
图3  不同W含量镍基高温合金的晶粒尺寸分布
图4  不同W含量镍基高温合金的EBSD像
图5  不同W含量镍基高温合金枝晶干/枝晶间区域内γ'相形貌的SEM像
图6  不同W含量镍基高温合金中枝晶间/枝晶干区域形貌的SEM像
AlloyAverage size / μm2Average area ratio / %
14%W353.66.4
16%W378.57.5
18%W599.210.6
表2  不同W含量镍基高温合金中共晶的平均尺寸及含量
图7  16%W镍基高温合金中碳化物形貌的SEM-BSE像
图8  16%W镍基高温合金中α-W相形貌的SEM-SE和SEM-BSE像
图9  18%W镍基高温合金中α-W相形貌的SEM-SE和SEM-BSE像
图10  18%W镍基高温合金中枝晶间和枝晶干区域α-W相形貌的SEM像
图11  不同W含量镍基高温合金降温DTA曲线
图12  18%W合金凝固期间α-W分布变化示意图
[1] Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
[1] (师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281)
[2] Gao S, Zhou Y Z, Li C F, et al. Effects of platinum group metals addition on the precipitation of topologically close-packed phase in Ni-base single crystal superalloys [J]. J. Alloys Compd., 2016, 671: 458
[3] Yin F S, Zheng Q, Sun X F, et al. Effect of melt treatment on carbides formation in a cast nickel-base superalloy M963 [J]. J. Mater. Process. Technol., 2007, 183: 440
[4] Phillips P J, Unocic R R, Mills M J. Low cycle fatigue of a polycrystalline Ni-based superalloy: Deformation substructure analysis [J]. Int. J. Fatigue, 2013, 57: 50
[5] Du B N, Yang J X, Cui C Y, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy [J]. Mater. Des., 2015, 65: 57
[6] Chiou M S, Jian S R, Yeh A C, et al. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy [J]. Mater. Sci. Eng., 2016, A655: 237
[7] Zhang X B, Liu C S, Lv J Y, et al. Secondarily precipitated phases of a Ni-based superalloy during durable thermal treatment [J]. J. Northeastern Univ. (Nat. Sci.), 2005, 26: 355
[7] (张小彬, 刘常升, 吕俊英等. 镍基高温合金长期时效过程中第二相的析出 [J]. 东北大学学报(自然科学版), 2005, 26: 355)
[8] Tian S G, Qian B J, Li T, et al. Precipitation behavior of TCP phase and its influence on stress rupture property of single crystal nickel-based superalloys [J]. Chin. J. Nonferrous Met., 2010, 20: 2154
[8] (田素贵, 钱本江, 李 唐等. 镍基单晶合金中TCP相的析出行为及其对持久性能的影响 [J]. 中国有色金属学报, 2010, 20: 2154)
[9] Raju S V, Oni A A, Godwal B K, et al. Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure [J]. J. Alloys Compd., 2015, 619: 616
[10] Guo J T. Effects of several minor elements on superalloys and their mechanism [J]. Chin. J. Nonferrous Met., 2011, 21: 465
[10] (郭建亭. 几种微量元素在高温合金中的作用与机理 [J]. 中国有色金属学报, 2011, 21: 465)
[11] Yu Z H, Zhang Y, Zhai Y N, et al. The research progress of the role of C, B and Hf in nickel-based superalloy [J]. Foundry, 2017, 66: 1076
[11] (余竹焕, 张 洋, 翟娅楠等. C、B、Hf在镍基高温合金中作用的研究进展 [J]. 铸造, 2017, 66: 1076)
[12] Yen M K, Chen H Y. On the strengthening of nickel-base superalloys [J]. Acta Metall. Sin., 1964, 7: 307
[12] (颜鸣皋, 陈学印. 镍基高温合金的强化 [J]. 金属学报, 1964, 7: 307)
[13] Zheng L. The effects of tantalum and ruthenium on the microstructures and properties of low chromium and high tungsten content cast nickel-base superalloys [D]. Xi'an: Xi'an University of Technology, 2004
[13] (郑 亮. Ta和Ru对低Cr高W铸造镍基高温合金组织及性能的影响 [D]. 西安: 西安理工大学, 2004)
[14] Ritter N C, Sowa R, Schauer J C, et al. Effects of solid solution strengthening elements Mo, Re, Ru, and W on transition temperatures in nickel-based superalloys with high γ′-volume fraction: Comparison of experiment and CALPHAD calculations [J]. Metall. Mater. Trans., 2018, 49A: 3206
[15] Zheng Y R. Development and application of low Cr and high W content cast nickel based superalloys in China [J]. J. Aeronaut. Mater., 2003, 23(Suppl.1): 227
[15] (郑运荣. 我国低Cr高W系列铸造镍基高温合金的发展与应用 [J]. 航空材料学报, 2003, 23(增刊): 227)
[16] Xie J, Yu J J, Sun X F, et al. High-cycle fatigue behavior of K416B Ni-based casting superalloy at 700 ℃ [J]. Acta Metall. Sin., 2016, 52: 257
[16] (谢 君, 于金江, 孙晓峰等. K416B镍基铸造高温合金的700 ℃高周疲劳行为 [J]. 金属学报, 2016, 52: 257)
[17] Ma Y H, Zhao K, Yang F X, et al. Precipitation of α-W phase in nickel base superalloys [J]. J. Chin. Electr. Microsc. Soc., 2005, 24: 297
[17] (马永会, 赵 锴, 杨飞雪等. 镍基高温合金中α-W相的析出 [J]. 电子显微学报, 2005, 24: 297)
[18] Zheng L. Formation and transformation of α phase in Ta-containing low Cr and high W content cast Ni-base superalloys [J]. Chin. J. Nonferrous Met., 2005, 15: 1566
[18] (郑 亮. 含Ta低Cr高W铸造镍基高温合金中α相的形成与转变 [J]. 中国有色金属学报, 2005, 15: 1566)
[19] Xie J, Yu J J, Sun X F, et al. Microstructure and creep behavior of Hf-containing K416B as-cast Ni-based superalloy with high W content [J]. Chin. J. Nonferrous Met., 2015, 25: 1490
[19] (谢 君, 于金江, 孙晓峰等. 含铪高钨K416B镍基铸造高温合金的组织与蠕变行为 [J]. 中国有色金属学报, 2015, 25: 1490)
[20] Zhang L, Qi F, Zhang W H, et al. μ phase precipitation in a high W strengthening superalloy and its effect on tensile properties [J]. Rare Met. Mater. Eng., 2012, 41: 1965
[20] (张 磊, 祁 峰, 张伟红等. 一种高W高温合金中μ相析出及其对拉伸性能的影响 [J]. 稀有金属材料与工程, 2012, 41: 1965)
[21] Tian S G, Xia D, Li T, et al. Influence of element W and microstructure evolution on lattice parameters and misfits of nickel base superalloys [J]. J. Aeronaut. Mater., 2008, 28(4): 12
[21] (田素贵, 夏 丹, 李 唐等. W含量及组织状态对镍基高温合金晶格常数及错配度的影响 [J]. 航空材料学报, 2008, 28(4): 12)
[22] Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys—Fundamentals of a semi-empirical model [J]. Physica, 1980, 100B+C: 1
[23] Lu G M, Yue Q Z, Cui J Z. Thermodynamic properties of binary alloys of Zn-Mn and Zn-Ti [J]. Chin. J. Nonferrous Met., 2001, 11: 99
[23] (路贵民, 乐启炽, 崔建忠. Zn-Mn和Zn-Ti二元合金热力学性质 [J]. 中国有色金属学报, 2001, 11: 99)
[24] Wang W Y, Shang S L, Wang Y, et al. Impact of W on structural evolution and diffusivity of Ni-W melts: An ab initio molecular dynamics study [J]. J. Mater. Sci., 2015, 50: 1071
[25] Haidemenopoulos G N. Physical Metallurgy [M]. London: Taylor and Francis, 2018: 189
[26] Zhang Y F. The microstructure and mechanical properties of a superalloy strengthened by high W addition [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
[26] (张艳峰. 一种高W强化高温合金的组织与性能 [D]. 沈阳: 中国科学院金属研究所, 2009)
[27] Wang W, Fu L M. Effect of the Inclusions/precipitates size on the intragranular ferrite nucleation [J]. Acta Metall. Sin., 2008, 44: 723
[27] (王 巍, 付立铭. 夹杂物/析出相尺寸对晶内铁素体形核的影响 [J]. 金属学报, 2008, 44: 723)
[28] Wills V A, Mccartney D G. A comparative study of solidification features in nickel-base superalloys: Microstructural evolution and microsegregation [J]. Mater. Sci. Eng., 1991, A145: 223
[29] Pan Z Y, Hu X B, Xie G, et al. Effects of W and Re on the recrystallization of Ni-based single crystal superalloys [J]. J. Chin. Electr. Microsc. Soc., 2014, 33: 197
[29] (潘智毅, 胡肖兵, 谢 光等. 难熔元素W/Re对镍基单晶高温合金再结晶的影响 [J]. 电子显微学报, 2014, 33: 197)
[30] Zhang L, Qi F, Zhang W H, et al. Effect of Boron on solidification of high W nickel-base superalloy [J]. Hot Working Technol., 2011, 40(23): 33
[30] (张 磊, 祁 峰, 张伟红等. B对高W镍基高温合金凝固行为的影响 [J]. 热加工工艺, 2011, 40(23): 33)
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[4] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[5] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[8] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[9] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[10] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[11] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[12] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[13] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[14] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[15] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.