Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1324-1334    DOI: 10.11900/0412.1961.2020.00045
  本期目录 | 过刊浏览 |
Al42CrMo螺栓钢淬透性及组织的影响
吕超然1, 徐乐1(), 史超2, 刘进德3, 蒋伟斌4, 王毛球1
1 钢铁研究总院特殊钢研究所 北京 100081
2 内蒙古北方重工业集团有限公司 包头 014033
3 宁夏天地奔牛实业集团有限公司 石嘴山 753001
4 建龙北满特殊钢有限责任公司 齐齐哈尔 161041
Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel
LU Chaoran1, XU Le1(), SHI Chao2, LIU Jinde3, JIANG Weibin4, WANG Maoqiu1
1 Central Iron & Steel Research Institute, Beijing 100081, China
2 Inner Mongolia North Heavy Industries Group Co. Ltd. , Baotou 014033, China
3 Ningxia Tiandi Benniu Industrial Group Co. Ltd. , Shizuishan 753001, China
4 Jianlong Beiman Special Steel Co. Ltd. , Qiqihaer 161041, China
引用本文:

吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
Chaoran LU, Le XU, Chao SHI, Jinde LIU, Weibin JIANG, Maoqiu WANG. Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel[J]. Acta Metall Sin, 2020, 56(10): 1324-1334.

全文: PDF(5761 KB)   HTML
摘要: 

在42CrMo钢基础成分中配合添加Al-Ti和Al-B元素,通过末端淬火实验和截面硬度实验对比分析3种42CrMo钢淬透性的差异,并通过OM、SEM等手段观察晶粒形貌以及不同部位淬火后显微组织,利用三维原子探针(3DAP)分析元素分布,通过常规力学性能实验检测其常温拉伸和低温冲击性能。结果表明,Al-Ti、Al-B的添加均使42CrMo钢淬透性提高,Al-B钢增加淬透性作用更大,淬火后距淬火端25 mm处的硬度增加6 HRC,直径42、48和56 mm截面的心部硬度分别增加7、10和14 HRC,并且使钢的抗拉强度Rm≥1200 MPa,-40 ℃下冲击吸收功KV2≥27 J,力学性能满足低温环境下螺栓用钢的使用要求。通过化学相分析实验和TTT曲线测定,表明Al-Ti配合添加,Ti发挥固氮作用形成TiN,使Al固溶于铁素体中,抑制贝氏体产生;Al-B配合添加,一部分Al发挥固氮作用,另外一部分Al与B共同固溶于钢中,抑制珠光体和铁素体的转变,增加实验用钢在较低的冷速下获得马氏体的能力,提高钢的淬透性。通过3DAP实验分析钢中各元素的分布情况,其中Al元素在钢中弥散分布,抑制C的扩散,从而抑制贝氏体的形成,提高钢的淬透性。实验结果表明,Al在钢中添加既可作为固N元素促进B的固溶,也可由其自身固溶于钢中,提高材料的淬透性。

关键词 42CrMo钢淬透性3DAP力学性能相分析    
Abstract

42CrMo steel has a good combination of strength and toughness after quenching and tempering treatment, which make it an ideal candidate material for high strength bolt. Nevertheless, with the increase of bolt diameter in wind power field, the hardenability of 42CrMo steel is inadequate to manufacture the high strength bolt with diameter over 36 mm. Recent study indicates that Al addition is an economical and effective way to affect the phase transformation product during quenching process. In order to improve the hardenability of 42CrMo bolt steel, the effect of Al on the hardenability of 42CrMo was investigated by Jominy test and cross section hardness distribution test. OM and SEM were used to analyze the morphology of the grain size; chemical phase analysis test was used to detect the precipitation in Al addition steels; the isothermal transformation diagram (TTT curve) was measured to study the phase transformation of the steels; the three dimensional atom probe (3DAP) was used to analyze the Al distribution in matrix; the tensile and impact toughness properties of Al addition steels were also examined. It was found that the hardenability of 42CrMo bolt steel could be improved significantly by Al-Ti and Al-B addition, the hardness was increased by 6 HRC at the position of 25 mm from quenched end, the center hardness in diameter of 42, 48 and 56 mm was increased by 7, 10 and 14 HRC, respectively. The improvement of hardenability for Al-Ti addition steel can be attributed to the increasing dissolved Al content in the matrix because of the Ti addition, which suppresses the formation of bainite during the quenching process. The hardenability of Al-B addition steel is better than that of Al-Ti addition steel, which can be ascribed to the dissolved Al and B inhibiting the phase transformation of ferrite and pearlite. Moreover, Al can play an important role in increasing dissolved B content by means of AlN formation, in which the dissolved Al dispersive distribution in matrix is favorable to improve the hardenability of 42CrMo steel. Meanwhile, the tensile strength and Charpy V-notch impact energy at -40 ℃ of Al addition steels are adequate to manufacture grade 12.9 high strength bolt.

Key words42CrMo steel    hardenability    3DAP    mechanical property    phase analysis
收稿日期: 2020-02-14     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2016YFB0300104)
作者简介: 吕超然,女,1994年生,硕士生
SampleSteelAlsBTiN
1#42CrMo---0.0028
2#Al-Ti0.040-0.0280.0065
3#Al-B0.0740.0012-0.0076
表1  实验用钢的化学成分 (mass fraction / %)
图1  实验用钢的末端淬火淬透性曲线
图2  实验用钢的截面硬度曲线
图3  实验用钢的晶粒形貌
图4  实验用钢距淬火端不同距离显微组织
图5  实验用钢不同横截面心部组织对比
图6  不同回火温度下实验用钢的抗拉强度和低温(-40℃)冲击性能
图7  42CrMo钢过冷奥氏体等温转变曲线
图8  实验用钢的XRD谱
图9  2#和3#钢析出相形貌和EDS分析
图10  实验用钢相分析结果
图11  含晶界针尖试样以及通过3DAP测得针尖处金属元素含量
图12  2#钢各元素在3D空间的分布
图13  晶界处元素在3D空间的分布
[1] Bayrak M, Ozturk F, Demirezen M, et al. Analysis of tempering treatment on material properties of DIN 41Cr4 and DIN 42CrMo4 steels [J]. J. Mater. Eng. Perform., 2007, 16: 597
doi: 10.1007/s11665-007-9043-1
[2] Brnic J, Turkalj G, Canadija M, et al. Study of the effects of high temperatures on the engineering properties of steel 42CrMo4 [J]. High Temp. Mater. Processes, 2015, 34: 27
[3] Qu Z, Guo K H. Embrittlement of bolts made of the 25Cr2Mo1V steel after long exposure at 540 ℃ [J]. Acta Metall. Sin., 1980, 16: 371
[3] (曲 哲, 郭可信. 25Cr2Mo1V钢螺栓在540℃长期使用中变脆的研究 [J]. 金属学报, 1980, 16: 371)
[4] Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high-strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, A755: 50
[5] Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness [J]. Mater. Sci. Eng., 2019, A759: 298
[6] Pan Z Y, Lai C B, Shi R C, et al. Development and application of high strength steel for bolts [J]. Iron Steel, 2001, 36(4): 47
[6] (潘祖诒, 赖朝彬, 石荣才等. 高强度螺栓钢的研制与应用 [J]. 钢铁, 2001, 36(4): 47)
[7] Jia G Q, Shen H W, Zhu Y M. Tensile stress relaxation of turbine bolt steels at high temperature [J]. Acta Metall. Sin. (Engl. Lett.), 2004, 17: 220
[8] Wang M Q, Dong H, Hui W J, et al. Effect of heat treatment on delayed fracture resistance of structural steel 42CrMo [J]. Acta Metall. Sin., 2002, 38: 715
[8] (王毛球, 董 瀚, 惠卫军等. 热处理对42CrMo钢的耐延迟断裂性能的影响 [J]. 金属学报, 2002, 38: 715)
[9] Yang Y. Fatigue properties and failure analysis of connection bolt in wind power application [D]. Dalian: Dalian Maritime University, 2015
[9] (杨 阳. 风电连接螺栓疲劳性能及其失效分析 [D]. 大连: 大连海事大学, 2015)
[10] Liu C, Zhao M C, Unenbayar T, et al. Hot deformation behavior of a new nuclear use reduced activation ferritic/martensitic steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 825
doi: 10.1007/s40195-018-0851-0
[11] Zhang X M. Fracture analysis of high strength bolt for wind power unit [J]. Met. Prod., 2013, 39(2): 45
[11] (张先鸣. 风电机组用高强度螺栓断裂分析 [J]. 金属制品, 2013, 39(2): 45)
[12] Hosford W F. Iron and Steel [M]. New York: Cambridge University Press, 2012: 137
[13] Prayitno D, Sugiarto R. Effect of aluminizing on hardenability of steel (S45C) [J]. IOP Conf. Ser. Earth Environ. Sci., 2018, 106: 12051
doi: 10.1088/1755-1315/106/1/012051
[14] Wu J X, Peng Z Y, Liu J, et al. Influence of alloying elements and microstructure on the hardness of 42CrMo steel [J]. Res. Iron Steel, 2012, 40(4): 28
[14] (吴俊雄, 彭振宇, 刘 建等. 合金元素及显微组织对42CrMo钢硬度的影响 [J]. 钢铁研究, 2012, 40(4): 28)
[15] Ma D L, Liu J J, Ma D H. Influence of microalloying elements on microstructure and mechanical properties of 42CrMo steel [J]. China Heavy Equip., 2016, (2): 40
[15] (马东良, 刘佳佳, 马东辉. 微合金化元素对42CrMo钢组织与性能的影响 [J]. 中国重型装备, 2016, (2): 40)
[16] Foy W J. The effect of boron on the hardenability of steel [D]. Montana: Montana School of Mines, 1943
[17] Mackenzie D. Hardenability [J]. Gear Solutions, 2017, 23(5): 20
[18] Zhao M C, Unenbayar T, Zhao Y C, et al. Influence of tempering temperature on the microstructure and mechanical properties of a Cr-Ni-Mo-alloyed steel for rock drill applications [J]. Steel Res. Int., 2019, 90: 1900297
doi: 10.1002/srin.v90.12
[19] Kraposhin V S, Talis A L, Kamenskaya N I, et al. Arrangement of collective B12 atoms in the crystal structure of γ-Fe and effect of boron on the hardenability of Steel [J]. Met. Sci. Heat Treat., 2018, 60: 63
doi: 10.1007/s11041-018-0241-2
[20] Jiang S J. Study on the determination method of trace boron in steel and its influence on hardenability [D]. Hangzhou: Zhejiang University of Technology, 2015
[20] (蒋胜军. 钢中微量硼的测定方法研究及其对钢淬透性的影响 [D]. 杭州: 浙江工业大学, 2015)
[21] Si T Z, Wu Z S, Gao Y L, et al. Microstructure and mechanical properties of the microalloyed 42CrMo steels with Ti and B [J]. Heat Treat. Met., 2012, 37(11): 46
[21] (斯庭智, 吴宗双, 高亚磊等. Ti、B微合金化42CrMo钢的组织与性能 [J]. 金属热处理, 2012, 37(11): 46)
[22] Yutaro I, Yasuhiro M, Takeshi F, et al. Improvement of hardenability and toughness of SCM440 with addition of Al [J]. Sanyo Tech. Rep., 2013, 20(1): 24
[22] (石原悠太郎, 松本康弘, 藤松威史等. Alを活用したSCM440の焼入性ならびに焼入焼戻し材の靭性の改善 [J]. 山陽特殊製鋼技報, 2013, 20(1): 24)
[23] Zhang J, Qu J B, Zhang K, et al. Effect of wTi/wN and wAl on hardenability and mechanical properties of B-containing steels [J]. J. Iron Steel Res. Int., 2016, 28(2): 57
[23] (张 娟, 曲锦波, 张 宽等. wTi/wNwAl对含B钢淬透性及力学性能的影响 [J]. 钢铁研究学报, 2016, 28(2): 57)
doi: 10.13228/j.boyuan.issn1001- 0963.20150204
[24] Pan T, Wang X Y, Su H, et al. Effect of alloying element Al on hardenabilitity and mechanical properties of micro-B treated ultra-heavy plate steels [J]. Acta Metall. Sin., 2014, 50: 431
doi: 10.3724/SP.J.1037.2013.00754
[24] (潘 涛, 王小勇, 苏 航等. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响 [J]. 金属学报, 2014, 50: 431)
doi: 10.3724/SP.J.1037.2013.00754
[25] Du Y. Applications of TEM and 3DAP to measurement of phase diagrams [J]. J. Phase Equilib. Diffus., 2014, 35: 519
doi: 10.1007/s11669-014-0337-3
[26] Huang S, Wu B B, Wang Z Q, et al. EBSD study on the significance of carbon content on hardenability [J]. Mater. Lett., 2019, 254: 412
doi: 10.1016/j.matlet.2019.07.106
[27] Honma T, Yanagita S, Hono K, et al. Coincidence doppler broadening and 3DAP study of the pre-precipitation stage of an Al-Li-Cu-Mg-Ag alloy [J]. Acta Mater., 2004, 52: 1997
doi: 10.1016/j.actamat.2003.12.043
[28] Yu X M, Zhao S J. Study on Cu precipitate of the low C high strength steel containing Cu and Ni during isochronal tempering [J]. Acta Metall. Sin., 2013, 49: 569
doi: 10.3724/SP.J.1037.2012.00666
[28] (余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时回火析出富Cu相的研究 [J]. 金属学报, 2013, 49: 569)
doi: 10.3724/SP.J.1037.2012.00666
[29] Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy [J]. Scr. Mater., 2005, 53: 675
doi: 10.1016/j.scriptamat.2005.05.030
[30] Doane D V. Application of hardenability concepts in heat treatment of steel [J]. J. Heat Treat., 1979, 1: 5
[31] Xin Y R, Hai S R, Yong W K, et al. Solid-state diffusion bonding of NbSS/Nb5Si3 composite using Ni/Al and Ti/Al nanolayers [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1142
doi: 10.1007/s40195-019-00906-2
[32] Yuan G T, Fang L, An W Z, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК151 [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1298
doi: 10.1007/s40195-019-00894-3
[33] Yong Q L. Second Phase in Iron and Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 78
[33] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 78)
[34] He X F, Cao Y G, Wang M Q, et al. Effect of grain size on hardenability of gear steel [J]. J. Iron Steel Res. Int., 2018, 30: 206
[34] (何肖飞, 曹燕光, 王毛球等. 齿轮钢晶粒尺寸对淬透性的影响 [J]. 钢铁研究学报, 2018, 30: 206)
[35] Zhang X M, Wang Y Y, Liu S G, et al. Effect of trace Co on the hardenability of 7085 aluminum alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2993
[36] Liu M, Xu G, Tian J Y, et al. The effect of stress on bainite transformation, microstructure, and properties of a low-carbon bainitic steel [J]. Steel Res. Int., 2019, 90: 1900159
doi: 10.1002/srin.v90.10
[37] Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels [J]. Scr. Mater., 2011, 64: 1118
doi: 10.1016/j.scriptamat.2011.03.003
[38] Wu H D, Miyamoto G, Yang Z G, et al. Incomplete bainite transformation accompanied with cementite precipitation in Fe-1.5(3.0)%Si-0.4%C alloys [J]. Acta Metall. Sin., 2018, 54: 367
doi: 10.11900/0412.1961.2017.00262
[38] (武慧东, 宫本吾郎, 杨志刚等. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出 [J]. 金属学报, 2018, 54: 367)
doi: 10.11900/0412.1961.2017.00262
[39] Chen J D, Mo W L, Wang P, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo [J]. Acta Metall. Sin., 2012, 48: 1186
doi: 10.3724/SP.J.1037.2012.00340
[39] (陈俊丹, 莫文林, 王 培等. 回火温度对42CrMo钢冲击韧性的影响 [J]. 金属学报, 2012, 48: 1186)
doi: 10.3724/SP.J.1037.2012.00340
[40] Chen J R, Li C J. Solid Phase Transitions in Metals and Alloys [M]. Beijing: Metallurgical Industry Press, 1997: 215
[40] (陈景榕, 李承基. 金属与合金中的固态相变 [M]. 北京: 冶金工业出版社, 1997: 215)
[41] Çakir M, Özsoy A. Investigation of the correlation between thermal properties and hardenability of Jominy bars quenched with air-water mixture for AISI 1050 steel [J]. Mater. Des., 2011, 32: 3099
doi: 10.1016/j.matdes.2010.12.035
[42] Chi C Y, Dong J X, Liu W Q, et al. 3DAP investigation of precipitation behavior of Cu-rich phase in Super304H heat resistant steel [J]. Acta Metall. Sin., 2010, 46: 1141
doi: 10.3724/SP.J.1037.2009.00853
[42] (迟成宇, 董建新, 刘文庆等. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为 [J]. 金属学报, 2010, 46: 1141)
doi: 10.3724/SP.J.1037.2009.00853
[43] Xie C, Wu X C, Min N, et al. Carbon segregation behavior of high-carbon high-alloy steel during deep cryogenic treatment using 3DAP [J]. Acta Metall. Sin., 2015, 51: 325
doi: 10.11900/0412.1961.2014.00430
[43] (谢 尘, 吴晓春, 闵 娜等. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为 [J]. 金属学报, 2015, 51: 325)
doi: 10.11900/0412.1961.2014.00430
[44] Long X Y, Kang J, Lv B, et al. Carbide-free bainite in medium carbon steel [J]. Mater. Des., 2014, 64: 237
doi: 10.1016/j.matdes.2014.07.055
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.