Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 1015-1024    DOI: 10.11900/0412.1961.2019.00400
  本期目录 | 过刊浏览 |
WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响
和淑文1, 王鸣华2, 白琴1(), 夏爽1, 周邦新1
1.上海大学材料研究所 上海 200072
2.宝山钢铁股份有限公司 上海 201900
Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide
HE Shuwen1, WANG Minghua2, BAI Qin1(), XIA Shuang1, ZHOU Bangxin1
1. Institute of Materials, Shanghai University, Shanghai 200072, China
2. Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China
引用本文:

和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
Shuwen HE, Minghua WANG, Qin BAI, Shuang XIA, Bangxin ZHOU. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. Acta Metall Sin, 2020, 56(7): 1015-1024.

全文: PDF(2809 KB)   HTML
摘要: 

利用SEM、EDS、三点弯曲装置及硬度计等手段研究了TaC含量对WC-TiC-TaC-Co硬质合金显微组织和力学性能的影响。结果表明,WC-TiC-TaC-Co硬质合金主要由3种相组成:WC相、(W, Ti, Ta)C相和γ相。随着TaC的质量分数从4.6%增加到7.3%,尺寸小于0.5 μm的WC晶粒比例增加;尺寸大于1 μm的复合碳化物(W, Ti, Ta)C晶粒比例增加,且均匀分散分布的(W, Ti, Ta)C开始聚集。合金的密度、硬度与断裂韧性均呈先下降后上升再下降的变化趋势;合金的抗弯强度呈先上升后下降的趋势。当TaC含量为6.3%时,合金的综合力学性能最佳:硬度、断裂韧性和抗弯强度分别为1749 HV30、10.2 MPa·m1/2和2247 MPa。

关键词 硬质合金晶粒尺寸力学性能    
Abstract

WC-Co cemented carbides, consisted of hard phase WC and ductile phase γ-phase, are usually prepared by a powder metallurgy and liquid phase sintering methodology. Due to the combined properties of high hardness and toughness, cemented carbides have high wear resistance and are widely used as machining, cutting, drilling, mining and forming tools. When the grain size of WC phase in WC-Co alloy is reduced to submicron, the hardness, toughness and strength of the material can be improved. TaC was considered as an effective additive of WC-Co based tools, for it made a great contribution to the enhancement of mechanical properties of WC-Co alloy. In this work, the effect of TaC on the microstructure and mechanical properties of WC-TiC-TaC-Co cemented carbide were investigated by means of SEM, EDS, three-point bending apparatus and hardness tester. The results show that WC-TiC-TaC-Co cemented carbide is mainly composed of three phases: WC phase, (W, Ti, Ta)C phase and γ phase. With the increase of TaC content from 4.6% (mass fraciton) to 7.3%, the proportion of WC grains with the size of less than 0.5 μm increases; the proportion of (W, Ti, Ta)C grains with the size of larger than 1 μm increases, and the (W, Ti, Ta)C grains begin to aggregate; the density of the alloy first decreases then increases and decreases, and the variation tendencies of hardness and fracture toughness are consistent with the density; the transverse rupture strength of the alloy first increases and then decreases. WC-TiC-TaC-Co cemented carbide with 6.3% TaC shows the best mechanical properties: the hardness, fracture toughness and transverse rupture strength are 1749 HV30, 10.2 MPa·m1/2and 2247 MPa, respectively.

Key wordscemented carbide    grain size    mechanical property
收稿日期: 2019-11-25     
ZTFLH:  TG135  
基金资助:国家自然科学基金项目(51671122);国家自然科学基金项目(51871144)
作者简介: 和淑文,女,1994年生,硕士生
SampleWCCoTa*Ti
S482.15.06.24.32.4
S579.45.46.75.23.3
S679.45.06.95.92.8
S777.56.36.66.82.8
表1  WC-TiC-TaC-Co硬质合金成分 (mass fraction / %)
图1  三点弯曲装置示意图(俯视图)
图2  WC-TiC-TaC-Co硬质合金的SEM-BSE像
PositionWCCoTaTi
189.310.7---
232.311.1-38.817.8
343.2-56.8--
表2  图2a中各点EDS结果 (mass fraction / %)
图3  WC-TiC-TaC-Co硬质合金中WC和(W, Ti, Ta)C晶粒尺寸分布图
图4  TaC含量对WC-TiC-TaC-Co硬质合金的密度和硬度的影响
图5  TaC含量对WC-TiC-TaC-Co硬质合金断裂韧性的影响
图6  WC-TiC-TaC-Co硬质合金裂纹形貌
图7  WC-TiC-TaC-Co硬质合金中WC晶粒取向分布图
图8  TaC含量对WC-TiC-TaC-Co硬质合金抗弯强度的影响
图9  WC-TiC-TaC-Co硬质合金断口形貌
图10  WC-TiC-TaC-Co硬质合金的断口形貌放大图
[1] Chen J, Deng X, Gong M F, et al. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer [J]. Appl. Surf. Sci., 2016, 380: 108
doi: 10.1016/j.apsusc.2016.02.040
[2] Östberg G, Buss K, Christensen M, et al. Mechanisms of plastic deformation of WC-Co and Ti(C, N)-WC-Co [J]. Int. J. Refract. Met. Hard Mater., 2006, 24: 135
[3] Gu L N, Huang J W, Tang Y F, et al. Influence of different post treatments on microstructure and properties of WC-Co cemented carbides [J]. J. Alloys Compd., 2015, 620: 116
[4] Liu S R, Zhou J T, Ma L. Effects of TaC, Cr3C2 on property and microstructure of WC-Co cemented carbides [J]. Cem. Carbide, 1997, 14: 22
[4] (刘寿荣, 周金亭, 马 岚. TaC、Cr3C2对WC-Co硬质合金组织和性能的影响 [J]. 硬质合金, 1997, 14: 22)
[5] O'Quigley D G F, Luyckx S, James M N. New results on the relationship between hardness and fracture toughness of WC-Co hardmetal [J]. Mater. Sci. Eng., 1996, A209: 228
[6] Lee K H, Cha S I, Kim B K, et al. Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2006, 24: 109
[7] Su W, Sun Y X, Yang H L, et al. Effects of TaC on microstructure and mechanical properties of coarse grained WC-9Co cemented carbides [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1194
[8] Liu S R. Mechanism of the effects of TaC and Cr3C2 on property of WC-Co cemented carbides [J]. Rare Met. Mater. Eng., 1997, 26: 31
[8] (刘寿荣. WC-Co硬质合金中TaC, Cr3C2添加剂的作用机理 [J]. 稀有金属材料与工程, 1997, 26: 31)
[9] Zhou W, Xiong J, Wan W C, et al. The effect of NbC on mechanical properties and fracture behavior of WC-10Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 72
[10] Morton C W, Wills D J, Stjernberg K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys [J]. Int. J. Refract. Met. Hard Mater., 2005, 23: 287
[11] Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC-10wt%Co-xTaC nano powders [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 801
[12] Huang S W, Xiong J, Guo Z X, et al. Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature [J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 134
[13] Farhat Z N. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel [J]. Mater. Charact., 2003, 51: 117
doi: 10.1016/j.matchar.2003.10.005
[14] Van d M R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt.% Co cemented carbides against steel counterfaces [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 94
doi: 10.1016/j.ijrmhm.2013.02.009
[15] Wang L L, Li H Y, Liu N. Effect of TiC on microstructures and mechanical properties of WC-Co-based carbides [J]. Heat Treat., 2010, 25(3): 25
[15] (王丽利, 李海艳, 刘 宁. 添加TiC对WC-Co基硬质合金组织和力学性能的影响 [J]. 热处理, 2010, 25(3): 25)
[16] Li T J, Xiong J, Guo Z X, et al. Research on microstructure and erosion resistance of WC-x%TiC-6%Co cemented carbide [J]. Cem. Carbide, 2017, 34: 129
[16] (李体军, 熊 计, 郭智兴等. WC-x%TiC-6%Co硬质合金特征及冲刷磨损性能的研究 [J]. 硬质合金, 2017, 34: 129)
[17] Rolander U, Weinl G, Zwinkels M. Effect of Ta on structure and mechanical properties of (Ti, Ta, W)(C, N)-Co cermets [J]. Int. J. Refract. Met. Hard Mater., 2001, 19: 325
doi: 10.1016/S0263-4368(01)00042-7
[18] Xiao G T, Liu Y, Ye J W, et al. The influence of different content of (W, Ta)C composite carbide on microstructure and properties of WC-10Co cemented carbide [J]. Powder Metall. Technol., 2013, 31: 355
[18] (肖广涛, 刘 颖, 叶金文等. (W, Ta)C复合碳化物含量对WC-10Co硬质合金显微结构和力学性能的影响 [J]. 粉末冶金技术, 2013, 31: 355)
[19] Liu M L, Huang X Y, Duan S T, et al. Diffraction contrast study on microstructure and deformation process of WC-Co cemented carbide [J]. Acta Metall. Sin., 1982, 18: 689
[19] (刘曼朗, 黄孝瑛, 段石田, 等. WC-Co硬质合金的微观结构与形变过程的电子衍衬研究 [J]. 金属学报, 1982, 18: 689)
[20] Li C H, Yu L X, Xiong W H. Effect of WC particle size on WC-Co cemented carbides fracture toughness [J]. Cem. Carbide, 2001, 18: 138
[20] (李晨辉, 余立新, 熊惟皓. WC的粒度对WC-Co硬质合金断裂韧性的影响 [J]. 硬质合金, 2001, 18: 138)
[21] Liu X M, Zhang J L, Hou C, et al. Mechanisms of WC plastic deformation in cemented carbide [J]. Mater. Des., 2018, 150: 154
doi: 10.1016/j.matdes.2018.04.025
[22] Sun J L, Zhao J, Li Z L, et al. Effects of initial particle size distribution and sintering parameters on microstructure and mechanical properties of functionally graded WC-TiC-VC-Cr3C2-Co hard alloys [J]. Ceram. Int., 2017, 43: 2686
doi: 10.1016/j.ceramint.2016.11.086
[23] Min S Y, Liao J, Shi K H, et al. Effects of carbon content and B class porosity on bending strength of WC-8%Co cemented carbide [J]. Cem. Carbide, 2013, 30: 24
[23] (闵召宇, 廖 军, 时凯华等. 碳量及B类孔隙对WC-8%Co硬质合金抗弯强度的影响 [J]. 硬质合金, 2013, 30: 24)
[24] Weidow J, Andrén H O. Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions [J]. Int. J. Refract. Met. Hard Mater., 2011, 29: 38
doi: 10.1016/j.ijrmhm.2010.06.010
[25] Chang S H, Chen S L. Characterization and properties of sintered WC-Co and WC-Ni-Fe hard metal alloys [J]. J. Alloys Compd., 2014, 585: 407
doi: 10.1016/j.jallcom.2013.09.188
[26] Song S H, Li J C. Initiation of microcracks in WC-Co alloys [J]. Acta Metall. Sin., 1987, 23: 521
[26] (宋士泓, 李健纯. WC-Co合金微裂纹形核过程的探讨 [J]. 金属学报, 1987, 23: 521)
[27] Akhtar F, Humail I S, Askari S J, et al. Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC-(W, Ti, Ta)C-6wt% Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2007, 25: 405
doi: 10.1016/j.ijrmhm.2006.11.005
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.