Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 1015-1024    DOI: 10.11900/0412.1961.2019.00400
  本期目录 | 过刊浏览 |
WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响
和淑文1, 王鸣华2, 白琴1(), 夏爽1, 周邦新1
1.上海大学材料研究所 上海 200072
2.宝山钢铁股份有限公司 上海 201900
Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide
HE Shuwen1, WANG Minghua2, BAI Qin1(), XIA Shuang1, ZHOU Bangxin1
1. Institute of Materials, Shanghai University, Shanghai 200072, China
2. Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China
全文: PDF(2809 KB)   HTML
摘要: 

利用SEM、EDS、三点弯曲装置及硬度计等手段研究了TaC含量对WC-TiC-TaC-Co硬质合金显微组织和力学性能的影响。结果表明,WC-TiC-TaC-Co硬质合金主要由3种相组成:WC相、(W, Ti, Ta)C相和γ相。随着TaC的质量分数从4.6%增加到7.3%,尺寸小于0.5 μm的WC晶粒比例增加;尺寸大于1 μm的复合碳化物(W, Ti, Ta)C晶粒比例增加,且均匀分散分布的(W, Ti, Ta)C开始聚集。合金的密度、硬度与断裂韧性均呈先下降后上升再下降的变化趋势;合金的抗弯强度呈先上升后下降的趋势。当TaC含量为6.3%时,合金的综合力学性能最佳:硬度、断裂韧性和抗弯强度分别为1749 HV30、10.2 MPa·m1/2和2247 MPa。

关键词 硬质合金晶粒尺寸力学性能    
Abstract

WC-Co cemented carbides, consisted of hard phase WC and ductile phase γ-phase, are usually prepared by a powder metallurgy and liquid phase sintering methodology. Due to the combined properties of high hardness and toughness, cemented carbides have high wear resistance and are widely used as machining, cutting, drilling, mining and forming tools. When the grain size of WC phase in WC-Co alloy is reduced to submicron, the hardness, toughness and strength of the material can be improved. TaC was considered as an effective additive of WC-Co based tools, for it made a great contribution to the enhancement of mechanical properties of WC-Co alloy. In this work, the effect of TaC on the microstructure and mechanical properties of WC-TiC-TaC-Co cemented carbide were investigated by means of SEM, EDS, three-point bending apparatus and hardness tester. The results show that WC-TiC-TaC-Co cemented carbide is mainly composed of three phases: WC phase, (W, Ti, Ta)C phase and γ phase. With the increase of TaC content from 4.6% (mass fraciton) to 7.3%, the proportion of WC grains with the size of less than 0.5 μm increases; the proportion of (W, Ti, Ta)C grains with the size of larger than 1 μm increases, and the (W, Ti, Ta)C grains begin to aggregate; the density of the alloy first decreases then increases and decreases, and the variation tendencies of hardness and fracture toughness are consistent with the density; the transverse rupture strength of the alloy first increases and then decreases. WC-TiC-TaC-Co cemented carbide with 6.3% TaC shows the best mechanical properties: the hardness, fracture toughness and transverse rupture strength are 1749 HV30, 10.2 MPa·m1/2and 2247 MPa, respectively.

Key wordscemented carbide    grain size    mechanical property
收稿日期: 2019-11-25     
ZTFLH:  TG135  
基金资助:国家自然科学基金项目(51671122);国家自然科学基金项目(51871144)
通讯作者: 白琴     E-mail: baiqin31@shu.edu.cn
Corresponding author: BAI Qin     E-mail: baiqin31@shu.edu.cn
作者简介: 和淑文,女,1994年生,硕士生

引用本文:

和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
Shuwen HE, Minghua WANG, Qin BAI, Shuang XIA, Bangxin ZHOU. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide. Acta Metall Sin, 2020, 56(7): 1015-1024.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00400      或      https://www.ams.org.cn/CN/Y2020/V56/I7/1015

SampleWCCoTa*Ti
S482.15.06.24.32.4
S579.45.46.75.23.3
S679.45.06.95.92.8
S777.56.36.66.82.8
表1  WC-TiC-TaC-Co硬质合金成分 (mass fraction / %)
图1  三点弯曲装置示意图(俯视图)
图2  WC-TiC-TaC-Co硬质合金的SEM-BSE像
PositionWCCoTaTi
189.310.7---
232.311.1-38.817.8
343.2-56.8--
表2  图2a中各点EDS结果 (mass fraction / %)
图3  WC-TiC-TaC-Co硬质合金中WC和(W, Ti, Ta)C晶粒尺寸分布图
图4  TaC含量对WC-TiC-TaC-Co硬质合金的密度和硬度的影响
图5  TaC含量对WC-TiC-TaC-Co硬质合金断裂韧性的影响
图6  WC-TiC-TaC-Co硬质合金裂纹形貌
图7  WC-TiC-TaC-Co硬质合金中WC晶粒取向分布图
图8  TaC含量对WC-TiC-TaC-Co硬质合金抗弯强度的影响
图9  WC-TiC-TaC-Co硬质合金断口形貌
图10  WC-TiC-TaC-Co硬质合金的断口形貌放大图
[1] Chen J, Deng X, Gong M F, et al. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer [J]. Appl. Surf. Sci., 2016, 380: 108
doi: 10.1016/j.apsusc.2016.02.040
[2] Östberg G, Buss K, Christensen M, et al. Mechanisms of plastic deformation of WC-Co and Ti(C, N)-WC-Co [J]. Int. J. Refract. Met. Hard Mater., 2006, 24: 135
[3] Gu L N, Huang J W, Tang Y F, et al. Influence of different post treatments on microstructure and properties of WC-Co cemented carbides [J]. J. Alloys Compd., 2015, 620: 116
[4] Liu S R, Zhou J T, Ma L. Effects of TaC, Cr3C2 on property and microstructure of WC-Co cemented carbides [J]. Cem. Carbide, 1997, 14: 22
[4] (刘寿荣, 周金亭, 马 岚. TaC、Cr3C2对WC-Co硬质合金组织和性能的影响 [J]. 硬质合金, 1997, 14: 22)
[5] O'Quigley D G F, Luyckx S, James M N. New results on the relationship between hardness and fracture toughness of WC-Co hardmetal [J]. Mater. Sci. Eng., 1996, A209: 228
[6] Lee K H, Cha S I, Kim B K, et al. Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2006, 24: 109
[7] Su W, Sun Y X, Yang H L, et al. Effects of TaC on microstructure and mechanical properties of coarse grained WC-9Co cemented carbides [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1194
[8] Liu S R. Mechanism of the effects of TaC and Cr3C2 on property of WC-Co cemented carbides [J]. Rare Met. Mater. Eng., 1997, 26: 31
[8] (刘寿荣. WC-Co硬质合金中TaC, Cr3C2添加剂的作用机理 [J]. 稀有金属材料与工程, 1997, 26: 31)
[9] Zhou W, Xiong J, Wan W C, et al. The effect of NbC on mechanical properties and fracture behavior of WC-10Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 72
[10] Morton C W, Wills D J, Stjernberg K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys [J]. Int. J. Refract. Met. Hard Mater., 2005, 23: 287
[11] Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC-10wt%Co-xTaC nano powders [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 801
[12] Huang S W, Xiong J, Guo Z X, et al. Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature [J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 134
[13] Farhat Z N. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel [J]. Mater. Charact., 2003, 51: 117
doi: 10.1016/j.matchar.2003.10.005
[14] Van d M R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt.% Co cemented carbides against steel counterfaces [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 94
doi: 10.1016/j.ijrmhm.2013.02.009
[15] Wang L L, Li H Y, Liu N. Effect of TiC on microstructures and mechanical properties of WC-Co-based carbides [J]. Heat Treat., 2010, 25(3): 25
[15] (王丽利, 李海艳, 刘 宁. 添加TiC对WC-Co基硬质合金组织和力学性能的影响 [J]. 热处理, 2010, 25(3): 25)
[16] Li T J, Xiong J, Guo Z X, et al. Research on microstructure and erosion resistance of WC-x%TiC-6%Co cemented carbide [J]. Cem. Carbide, 2017, 34: 129
[16] (李体军, 熊 计, 郭智兴等. WC-x%TiC-6%Co硬质合金特征及冲刷磨损性能的研究 [J]. 硬质合金, 2017, 34: 129)
[17] Rolander U, Weinl G, Zwinkels M. Effect of Ta on structure and mechanical properties of (Ti, Ta, W)(C, N)-Co cermets [J]. Int. J. Refract. Met. Hard Mater., 2001, 19: 325
doi: 10.1016/S0263-4368(01)00042-7
[18] Xiao G T, Liu Y, Ye J W, et al. The influence of different content of (W, Ta)C composite carbide on microstructure and properties of WC-10Co cemented carbide [J]. Powder Metall. Technol., 2013, 31: 355
[18] (肖广涛, 刘 颖, 叶金文等. (W, Ta)C复合碳化物含量对WC-10Co硬质合金显微结构和力学性能的影响 [J]. 粉末冶金技术, 2013, 31: 355)
[19] Liu M L, Huang X Y, Duan S T, et al. Diffraction contrast study on microstructure and deformation process of WC-Co cemented carbide [J]. Acta Metall. Sin., 1982, 18: 689
[19] (刘曼朗, 黄孝瑛, 段石田, 等. WC-Co硬质合金的微观结构与形变过程的电子衍衬研究 [J]. 金属学报, 1982, 18: 689)
[20] Li C H, Yu L X, Xiong W H. Effect of WC particle size on WC-Co cemented carbides fracture toughness [J]. Cem. Carbide, 2001, 18: 138
[20] (李晨辉, 余立新, 熊惟皓. WC的粒度对WC-Co硬质合金断裂韧性的影响 [J]. 硬质合金, 2001, 18: 138)
[21] Liu X M, Zhang J L, Hou C, et al. Mechanisms of WC plastic deformation in cemented carbide [J]. Mater. Des., 2018, 150: 154
doi: 10.1016/j.matdes.2018.04.025
[22] Sun J L, Zhao J, Li Z L, et al. Effects of initial particle size distribution and sintering parameters on microstructure and mechanical properties of functionally graded WC-TiC-VC-Cr3C2-Co hard alloys [J]. Ceram. Int., 2017, 43: 2686
doi: 10.1016/j.ceramint.2016.11.086
[23] Min S Y, Liao J, Shi K H, et al. Effects of carbon content and B class porosity on bending strength of WC-8%Co cemented carbide [J]. Cem. Carbide, 2013, 30: 24
[23] (闵召宇, 廖 军, 时凯华等. 碳量及B类孔隙对WC-8%Co硬质合金抗弯强度的影响 [J]. 硬质合金, 2013, 30: 24)
[24] Weidow J, Andrén H O. Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions [J]. Int. J. Refract. Met. Hard Mater., 2011, 29: 38
doi: 10.1016/j.ijrmhm.2010.06.010
[25] Chang S H, Chen S L. Characterization and properties of sintered WC-Co and WC-Ni-Fe hard metal alloys [J]. J. Alloys Compd., 2014, 585: 407
doi: 10.1016/j.jallcom.2013.09.188
[26] Song S H, Li J C. Initiation of microcracks in WC-Co alloys [J]. Acta Metall. Sin., 1987, 23: 521
[26] (宋士泓, 李健纯. WC-Co合金微裂纹形核过程的探讨 [J]. 金属学报, 1987, 23: 521)
[27] Akhtar F, Humail I S, Askari S J, et al. Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC-(W, Ti, Ta)C-6wt% Co cemented carbides [J]. Int. J. Refract. Met. Hard Mater., 2007, 25: 405
doi: 10.1016/j.ijrmhm.2006.11.005
[1] 张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066.
[2] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[3] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[4] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[5] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[6] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[7] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[8] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[9] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[10] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[11] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[14] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[15] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.