Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1067-1074    DOI: 10.11900/0412.1961.2019.00435
  本期目录 | 过刊浏览 |
取向硅钢二次再结晶过程中的取向选择行为
许占一1, 沙玉辉1(), 张芳1, 章华兵2, 李国保2, 储双杰2, 左良1,3
1 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2 宝山钢铁股份有限公司 上海 201900
3 中国科学院金属研究所 沈阳 110016
Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel
XU Zhanyi1, SHA Yuhui1(), ZHANG Fang1, ZHANG Huabing2, LI Guobao2, CHU Shuangjie2, ZUO Liang1,3
1 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2 Baoshan Iron & Steel Cooperation Limited, Shanghai 201900, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
Zhanyi XU, Yuhui SHA, Fang ZHANG, Huabing ZHANG, Guobao LI, Shuangjie CHU, Liang ZUO. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. Acta Metall Sin, 2020, 56(8): 1067-1074.

全文: PDF(2649 KB)   HTML
摘要: 

采用实验和计算的方法研究了取向硅钢二次再结晶织构的演变过程。发现取向硅钢通过二次再结晶过程中连续的取向选择,最终获得单一Goss ({110}<001>)织构。在二次再结晶动力学模型中引入依赖取向的相对晶界能系数,可定量描述不同偏差角Goss及非Goss取向晶粒的长大速率差异。通过分析初次再结晶晶粒尺寸分布、晶界特征和抑制力水平等因素对二次再结晶取向选择行为的耦合影响,提出增强Goss晶粒取向选择优势的多参数匹配方法。

关键词 取向硅钢二次再结晶织构抑制力晶粒尺寸    
Abstract

The key index of grain-oriented silicon steel is the sharpness of secondary recrystallization Goss ({110}<001>) texture, which is determined by the matrix grain size distribution, texture environment and inhibitor level. In the widely used low-temperature slab heating process in virtue of high efficiency and low-cost manufacturing, the instability of inhibitor and the enlarged matrix grain size distribution seriously restrict the occurrence of secondary recrystallization and the sharpness of Goss texture. The investigation on orientation selection behavior during abnormal grain growth can explore the potential routines to solve the problem. In this work, the evolution process of secondary recrystallization texture in grain-oriented silicon steel has been studied by both experiment and calculation. It is found that single Goss texture is finally obtained by means of continuous orientation selection during secondary recrystallization. The kinetic model for secondary recrystallization, introduced with orientation-dependent relative grain boundary energy coefficient, can describe quantitatively the difference in growth rate between Goss grains with various deviation angles and non-Goss grains. The combined effects of grain size distribution, grain boundary characteristic between Goss and matrix grains, together with inhibition force level on orientation selection behavior are analyzed. Accordingly, a multi-parameter matching method for promoting the advantage of Goss grains in orientation selection is proposed.

Key wordsgrain-oriented silicon steel    secondary recrystallization    texture    inhibition force    grain size
收稿日期: 2019-12-17     
ZTFLH:  TG142.77  
基金资助:国家重点研发计划项目(2016YFB0300305);国家自然科学基金项目(51671049);国家自然科学基金项目(51931002)
作者简介: 许占一,男,1990年生,博士生
图1  初次再结晶后与二次再结晶开始时Fe-3.25%Si取向硅钢中基体和Goss晶粒尺寸分布
图2  Fe-3.25%Si取向硅钢初次再结晶织构及Goss晶粒取向偏差角分布
图3  慢升温至1000 ℃保温100和200 s后Fe-3.25%Si取向硅钢的组织及二次再结晶晶粒取向
图4  二次再结晶完成后Fe-3.25%Si取向硅钢的宏观组织与二次再结晶晶粒取向分布
图5  二次再结晶完成后Goss取向二次再结晶晶粒的偏差角分布
图6  经1000 ℃保温不同时间后二次再结晶晶粒尺寸等值线
图7  不同抑制力水平下经1000 ℃保温100 s后二次再结晶晶粒尺寸等值线图
[1] Hayakawa Y. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel [J]. Sci. Technol. Adv. Mater., 2017, 18: 480
doi: 10.1080/14686996.2017.1341277 pmid: 28804524
[2] Xia Z S, Kang Y L, Wang Q L. Developments in the production of grain-oriented electrical steel [J]. J. Magn. Magn. Mater., 2008, 320: 3229
doi: 10.1016/j.jmmm.2008.07.003
[3] Moses A J. Energy efficient electrical steels: Magnetic performance prediction and optimization [J]. Scr. Mater., 2012, 67: 560
doi: 10.1016/j.scriptamat.2012.02.027
[4] He C X, Yang F Y, Yan G C, et al. Effect of normalizing on textures of thin-gauge grain-oriented silicon steel [J]. Acta Metall. Sin., 2016, 52: 1063
doi: 10.11900/0412.1961.2015.00554
[4] (何承绪, 杨富尧, 严国春等. 常化处理对薄规格取向硅钢织构的影响 [J]. 金属学报, 2016, 52: 1063)
doi: 10.11900/0412.1961.2015.00554
[5] Chu S J, Yang Y J, He Z H, et al. Calculation of magnetostriction coefficient for laser-scribed grain-oriented silicon steel based on magnetic domain interaction [J]. Acta Metall. Sin., 2019, 55: 362
doi: 10.11900/0412.1961.2018.00242
[5] (储双杰, 杨勇杰, 和正华等. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算 [J]. 金属学报, 2019, 55: 362)
doi: 10.11900/0412.1961.2018.00242
[6] Ushigami Y, Mizokami M, Fujikura M, et al. Recent development of low-loss grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 307
doi: 10.1016/S0304-8853(02)00933-2
[7] Harase J, Shimizu R. Distribution of {110}<001> oriented grains in the primary recrystallized 3% Si-Fe alloy [J]. Trans. Jpn. Inst. Met., 1988, 29(5): 388
doi: 10.2320/matertrans1960.29.388
[8] Hayakawa Y, Szpunar J A, Palumbo G, et al. The role of grain boundary character distribution in Goss texture development in electrical steels [J]. J. Magn. Magn. Mater., 1996, 160: 143
doi: 10.1016/0304-8853(96)00141-2
[9] Rouag N, Vigna G, Penelle R. Evolution of local texture and grain boundary characteristics during secondary recrystallisation of Fe-3%Si sheets [J]. Acta Metall. Mater., 1990, 38: 1101
doi: 10.1016/0956-7151(90)90182-G
[10] Shimizu R, Harase J. Coincidence grain boundary and texture evolution in Fe-3%Si [J]. Acta Mater., 1989, 37: 1241
doi: 10.1016/0001-6160(89)90118-1
[11] Lin P, Palumbo G, Harase J, et al. Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3%Si alloy [J]. Acta Mater., 1996, 44: 4677
doi: 10.1016/S1359-6454(96)00140-1
[12] Kumano T, Ushigami Y. Grain boundary characteristics of isolated grains in conventional grain oriented silicon steel [J]. ISIJ Int., 2007, 47: 890
doi: 10.2355/isijinternational.47.890
[13] Hayakawa Y, Szpunar J A. The role of grain boundary character distribution in secondary recrystallization of electrical steels [J]. Acta Mater., 1997, 45: 1285
doi: 10.1016/S1359-6454(96)00251-0
[14] Hayakawa Y, Szpunar J A. A new model of Goss texture development during secondary recrystallization of electrical steel [J]. Acta Mater., 1997, 45: 4713
doi: 10.1016/S1359-6454(97)00111-0
[15] Rajmohan N, Szpunar J A, Hayakawa Y. A role of fractions of mobile grain boundaries in secondary recrystallization of Fe-Si steels [J]. Acta Mater., 1999, 47: 2999
doi: 10.1016/S1359-6454(99)00162-7
[16] Rajmohan N, Szpunar J A, Hayakawa Y. Importance of fractions of highly mobile boundaries in abnormal growth of Goss grains [J]. Mater. Sci. Eng., 1999, A259: 8
[17] Rajmohan N, Szpunar J A. An analytical method for characterizing grain boundaries around growing Goss grains during secondary recrystallization [J]. Scr. Mater., 2001, 44: 2387
doi: 10.1016/S1359-6462(01)00941-1
[18] Morawiec A. Grain misorientations in theories of abnormal grain growth in silicon steel [J]. Scr. Mater., 2000, 43: 275
doi: 10.1016/S1359-6462(00)00403-6
[19] Morawiec A. On abnormal growth of Goss grains in grain-oriented silicon steel [J]. Scr. Mater., 2011, 64: 466
doi: 10.1016/j.scriptamat.2010.11.013
[20] Nakayama T, Ushigami Y. Modeling of secondary recrystallization in 3% silicon steels [J]. Mater. Sci. Forum, 1992, 94-96: 413
doi: 10.4028/www.scientific.net/MSF.94-96
[21] Ushigami Y, Kawasaki K, Nakayama T, et al. Dynamic observation of the growth of secondary recrystallized grains of Fe-3%Si alloy utilizing synchrotron X-ray topography [J]. Mater. Sci. Forum, 1994, 157-162: 1081
doi: 10.4028/www.scientific.net/MSF.157-162
[22] Ushigami Y. Theoretical analysis and computer simulation of secondary recrystallization in grain-oriented silicon steel [R]. Nippon Steel Technical Report No.102, 2013: 25
[23] Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metall., 1965, 13: 227
doi: 10.1016/0001-6160(65)90200-2
[24] Furtkamp M, Gottstein G, Molodov D A, et al. Grain boundary migration in Fe-3.5%Si bicrystals with [001] tilt boundaries [J]. Acta Mater., 1998, 46: 4103
doi: 10.1016/S1359-6454(98)00105-0
[25] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Amsterdam: Elsevier, 2004: 102
[26] Liu G T, Liu Z Q, Yang P, et al. Correlation between primary and secondary recrystallization texture components in low-temperature reheated grain-oriented silicon steel [J]. J. Iron Steel Res. Int., 2016, 23: 1234
doi: 10.1016/S1006-706X(16)30181-9
[27] Yoshitomi Y, Ushigami Y, Harase J, et al. Coincidence grain boundary and role of primary recrystallized grain growth on secondary recrystallization texture evolution in Fe-3%Si alloy [J]. Acta Metall. Mater., 1994, 42: 2593
doi: 10.1016/0956-7151(94)90200-3
[28] Ko K J, Rollett A D, Hwang N M. Abnormal grain growth of Goss grains in Fe-3%Si steel driven by sub-boundary-enhanced solid-state wetting: Analysis by Monte Carlo simulation [J]. Acta Mater., 2010, 58: 4414
doi: 10.1016/j.actamat.2010.04.038
[29] Mao W M, Zhang M H, Yang P. Behaviors of normal grain growth in polycrystalline Fe-3%Si alloys [J]. Steel Res. Int., 2014, 85: 1215
doi: 10.1002/srinv85.7
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[5] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[6] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[7] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[12] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[13] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[14] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.