|
|
Hf和Ta对镍基粉末高温合金蠕变断裂特征和性能的影响 |
张浩鹏1,2, 白佳铭1,2,3, 李新宇1,2,3, 李晓鲲1,2, 贾建1,2, 刘建涛1,2, 张义文1,2( ) |
1 钢铁研究总院 高温材料研究所 北京 100081 2 北京钢研高纳科技股份有限公司 北京 100081 3 东北大学 材料科学与工程学院 沈阳 110819 |
|
Effect of Hf and Ta on Creep Rupture Characteristics and Properties of Powder Metallurgy Ni-Based Superalloys |
ZHANG Haopeng1,2, BAI Jiaming1,2,3, LI Xinyu1,2,3, LI Xiaokun1,2, JIA Jian1,2, LIU Jiantao1,2, ZHANG Yiwen1,2( ) |
1 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China 2 Gaona Aero Material Co. Ltd., Beijing 100081, China 3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. Hf和Ta对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
Haopeng ZHANG,
Jiaming BAI,
Xinyu LI,
Xiaokun LI,
Jian JIA,
Jiantao LIU,
Yiwen ZHANG.
Effect of Hf and Ta on Creep Rupture Characteristics and Properties of Powder Metallurgy Ni-Based Superalloys[J]. Acta Metall Sin, 2025, 61(4): 583-596.
1 |
Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
|
1 |
张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
|
2 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
|
3 |
Wlodek S T, Kelly M, Alden D. The structure of N18 [A]. Superalloys 1992 [C]. Warrendale: The Minerals, Metals & Materials Society, 1992: 467
|
4 |
Wei B, Liu Z M, Nong B Z, et al. Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 867: 158377
|
5 |
Olson G B, Jou H J, Jung J, et al. Precipitation model validation in 3rd generation aeroturbine disc alloys [A]. Superalloys 2008 [C]. Warrendale: The Minerals, Metals & Materials Society, 2008: 923
|
6 |
Locq D, Nazé L, Franchet J M, et al. Metallurgical optimisation of PM superalloy N19 [J]. MATEC Web of Conferences, 2014, 14: 11007
|
7 |
Taylor M P, Evans H E, Stekovic S, et al. The oxidation characteristics of the nickel-based superalloy, RR1000, at temperatures of 700-900 oC [J]. Mater. High Temp., 2012, 29: 145
|
8 |
Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy DOE: Chemistry, properties, phase formations and thermal stability [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale: The Minerals, Metals & Materials Society, 2016: 189
|
9 |
Smith T M, Zarkevich N A, Egan A J, et al. Utilizing local phase transformation strengthening for nickel-base superalloys [J]. Commun. Mater., 2021, 2: 106
|
10 |
Antonov S. Design of modern high Nb-content γ-γ′ Ni-base superalloys [D]. Illinois: The Illinois Institute of Technology, 2017
|
11 |
Cochardt A W, Township W, County A, et al. High temperature alloys [P]. US Pat, 3005705, 1961
|
12 |
Zhao Y S, Zhang J, Luo Y S, et al. Effects of Hf and B on high temperature low stress creep behavior of a second generation Ni-based single crystal superalloy DD11 [J]. Mater. Sci. Eng., 2016, A672: 143
|
13 |
Zhang Y W, Hu B F. Function of microelement Hf in powder metallurgy nickel-based superalloys [J]. Acta Metall. Sin., 2015, 51: 967
doi: 10.11900/0412.1961.2014.00704
|
13 |
张义文, 胡本芙. 镍基粉末高温合金中微量元素Hf的作用 [J]. 金属学报, 2015, 51: 967
|
14 |
Yang Z K, Wang H, Zhang Y W, et al. Effect of Ta content on high temperature creep deformation behaviors and properties of PM nickel base superalloys [J]. Acta Metall. Sin., 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
|
14 |
杨志昆, 王 浩, 张义文 等. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响 [J]. 金属学报, 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
|
15 |
Bai J M, Zhang H P, Li X Y, et al. Evolution of creep rupture mechanism in advanced powder metallurgy superalloys with tantalum addition [J]. J. Alloys Compd., 2022, 925: 166713
|
16 |
Zhang H P, Bai J M, Li X K, et al. Effect of hafnium and tantalum on the microstructure of PM Ni-based superalloys [J]. J. Mater. Sci., 2022, 57: 6803
|
17 |
Zhang H P, Bai J M, Li X K, et al. Effect of Hf and Ta on the tensile properties of PM Ni-based superalloys [J]. J. Alloys Compd., 2023, 932: 167653
|
18 |
Du B N, Yang J X, Cui C Y, et al. Effects of grain refinement on the microstructure and tensile behavior of K417G superalloy [J]. Mater. Sci. Eng., 2015, A623: 59
|
19 |
Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
|
20 |
Viswanathan G B, Sarosi P M, Whitis D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT [J]. Mater. Sci. Eng., 2005, A400-401: 489
|
21 |
Bai J M, Zhang H P, Liu J T, et al. Temperature dependence of tensile deformation mechanisms in a powder metallurgy Ni-Co-Cr based superalloy with Ta addition [J]. Mater. Sci. Eng., 2022, A856: 143965
|
22 |
Zhang P, Yuan Y, Gu Y F, et al. Creep deformation behavior of a novel precipitate-hardened Ni-Fe-base superalloy at 750 oC [J]. Metall. Mater. Trans., 2020, 51A: 1062
|
23 |
Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14: 1479
|
24 |
Humphreys F J. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD) [J]. Scr. Mater., 2004, 51: 771
|
25 |
Tang Y L, Liu J T, Cheng H W, et al. Effect of hafnium on annealing twin formation in as-hot isostatically pressed nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2019, 772: 949
|
26 |
Chen Q, Kawagoishi N, Wang Q Y, et al. Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue [J]. Int. J. Fatigue, 2005, 27: 1227
|
27 |
Miao J S, Pollock T M, Jones J W. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature [J]. Acta Mater., 2009, 57: 5964
|
28 |
Wang Z C, Wang H, Liu G Q, et al. Effect of Ta on the microstructure of high performance Ni-based powder metallurgy superalloys [J]. Sci. China Technol. Sci., 2019, 62: 1961
|
29 |
Hu R, Bai G H, Li J S, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy [J]. Mater. Sci. Eng., 2012, A548: 83
|
30 |
Bai J M, Yuan Y, Zhang P, et al. Effect of carbon on microstructure and mechanical properties of HR3C type heat resistant steels [J]. Mater. Sci. Eng., 2020, A784: 138943
|
31 |
Sun F, Gu Y F, Yan J B, et al. Creep deformation and rupture mechanism of an advanced wrought Ni Fe-based superalloy for 700 oC class A-USC steam turbine rotor application [J]. J. Alloys Compd., 2016, 687: 389
|
32 |
He L Z, Zheng Q, Sun X F, et al. M23C6 precipitation behavior in a Ni-base superalloy M963 [J]. J. Mater. Sci., 2005, 40: 2959
|
33 |
Zhang P, Yuan Y, Shen S C, et al. Tensile deformation mechanisms at various temperatures in a new directionally solidified Ni-base superalloy [J]. J. Alloys Compd., 2017, 694: 502
|
34 |
Unocic R R, Zhou N, Kovarik L, et al. Dislocation decorrelation and relationship to deformation microtwins during creep of a γ′ precipitate strengthened Ni-based superalloy [J]. Acta Mater., 2011, 59: 7325
|
35 |
Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316
|
36 |
Kolbe M. The high temperature decrease of the critical resolved shear stress in nickel-base superalloys [J]. Mater. Sci. Eng., 2001, A319-321: 383
|
37 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
38 |
Yuan Y, Gu Y F, Zhong Z H, et al. Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature [J]. J. Microsc., 2012, 248: 34
|
39 |
Yuan Y, Gu Y F, Cui C Y, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature [J]. Mater. Sci. Eng., 2011, A528: 5106
|
40 |
Zhang B B, Tang Y G, Mei Q S, et al. Inhibiting creep in nanograined alloys with stable grain boundary networks [J]. Science, 2022, 378: 659
doi: 10.1126/science.abq7739
pmid: 36356141
|
41 |
Peng T, Yang B, Yang G, et al. Stress rupture properties and deformation mechanisms of Nimonic 105 alloy at intermediate temperature [J]. Mater. Sci. Eng., 2020, A777: 139085
|
42 |
Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
|
43 |
Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
|
44 |
Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys [J]. Metall. Trans., 1987, 18A: 1961
|
45 |
Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Mater., 2005, 53: 4623
|
46 |
Kim Y K, Kim D, Kim H K, et al. An intermediate temperature creep model for Ni-based superalloys [J]. Int. J. Plast., 2016, 79: 153
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|