Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 583-596    DOI: 10.11900/0412.1961.2023.00071
  研究论文 本期目录 | 过刊浏览 |
HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响
张浩鹏1,2, 白佳铭1,2,3, 李新宇1,2,3, 李晓鲲1,2, 贾建1,2, 刘建涛1,2, 张义文1,2()
1 钢铁研究总院 高温材料研究所 北京 100081
2 北京钢研高纳科技股份有限公司 北京 100081
3 东北大学 材料科学与工程学院 沈阳 110819
Effect of Hf and Ta on Creep Rupture Characteristics and Properties of Powder Metallurgy Ni-Based Superalloys
ZHANG Haopeng1,2, BAI Jiaming1,2,3, LI Xinyu1,2,3, LI Xiaokun1,2, JIA Jian1,2, LIU Jiantao1,2, ZHANG Yiwen1,2()
1 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2 Gaona Aero Material Co. Ltd., Beijing 100081, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
Haopeng ZHANG, Jiaming BAI, Xinyu LI, Xiaokun LI, Jian JIA, Jiantao LIU, Yiwen ZHANG. Effect of Hf and Ta on Creep Rupture Characteristics and Properties of Powder Metallurgy Ni-Based Superalloys[J]. Acta Metall Sin, 2025, 61(4): 583-596.

全文: PDF(7232 KB)   HTML
摘要: 

为研究新型镍基粉末高温合金中的重要强化元素Hf和Ta在合金蠕变过程中的作用,本工作通过SEM、TEM和EBSD等表征手段,从多尺度研究了在650~750 ℃范围内Hf和Ta对镍基粉末高温合金蠕变断裂特征和性能的影响。结果表明,添加Hf和Ta可以显著延长合金的蠕变断裂时间,降低最小蠕变速率,提高合金的承温能力和持久强度。各蠕变温度下的断口形貌类型一致,裂纹源区均为沿晶断裂,裂纹扩展区均为混合断裂,而Hf和Ta的添加显著降低了裂纹源区的面积。由于合金的层错能随着温度的升高而增加,蠕变变形机制由650 ℃下的微孪晶剪切为主导转变为750 ℃下的微孪晶剪切和超点阵层错剪切共同主导。添加Hf和Ta提高了合金中MC型碳化物的含量,显著降低了退火孪晶界的密度,有效抑制了二次裂纹的形核。添加Hf和Ta细化了晶界上的M23C6相并使其不连续析出,强化了晶界,抑制了沿晶断裂。添加Hf和Ta降低了合金在各温度下的层错能,提高了变形微孪晶的密度,增大了位错运动的阻力。添加Hf和Ta增加了二次γ′相的体积分数和平均尺寸,增大了γγ′相的晶格错配度,增强了γ/γ′相界面的强化作用。

关键词 镍基粉末高温合金HfTa蠕变断裂特征蠕变性能    
Abstract

Hf or Ta is widely added to powder metallurgy (PM) Ni-based superalloys to improve their microstructure and mechanical properties. However, research on the mechanism by which Hf and Ta synergistically affect creep performance is lacking. In this study, the effect of Hf and Ta on the creep rupture characteristics and properties of PM Ni-based superalloys at a temperature range of 650-750 oC was studied at multiple scales using SEM, EBSD, and TEM. The results showed that Hf and Ta significantly prolonged the creep rupture time, reduced the minimum creep rate, and improved the operating temperature and creep strength. The types of fracture morphologies at various creep temperatures were consistent, the crack source area exhibited intergranular fracture, the crack propagation area exhibited mixed fracture, but the addition of Hf and Ta significantly reduced the fraction of the crack source area. Considering that the stacking fault energy increased with increasing creep temperature, the creep deformation mechanism changed from microtwin shearing at 650 oC to microtwin and superlattice stacking fault shearing at 750 oC. In addition, Hf and Ta increased the content of MC-type carbides, significantly reducing the density of annealing twin boundaries and effectively inhibiting the nucleation of secondary cracks. Hf and Ta refined the M23C6 phase on grain boundaries and discontinued its precipitation, thereby strengthening the grain boundary and inhibiting the intergranular fracture. Hf and Ta reduced the stacking fault energy at various creep temperatures and increased the density of deformed microtwins, thereby increasing the resistance to dislocation movement. Moreover, Hf and Ta increased the volume fraction and average size of the secondary γ′ phase and increased the lattice mismatch between the γ and γ′ phases, thereby enhancing the strengthening effect of the γ/γ′ phase interface.

Key wordspowder metallurgy Ni-based superalloy    Hf    Ta    creep rupture characteristic    creep property
收稿日期: 2023-02-21     
ZTFLH:  TF125.5  
基金资助:国家科技重大专项项目(2017-VI-0008-0078);钢铁研究总院课题项目(SHI20051670J)
通讯作者: 张义文,yiwen64@cisri.cn,主要从事粉末高温合金研究
Corresponding author: ZHANG Yiwen, professor, Tel: (010)62186736, E-mail: yiwen64@cisri.cn
作者简介: 张浩鹏,男,1994年生,博士生
AlloyCrCoWMoAlTiNbCBZrHfTaNi
0Hf + 0Ta15.712.94.04.12.23.90.80.050.010.0400Bal.
0.5Hf + 0Ta15.612.94.04.12.23.90.90.050.010.040.520Bal.
0Hf + 2.4Ta15.613.24.04.02.33.90.80.060.010.0402.41Bal.
0.5Hf + 2.4Ta15.713.24.04.02.43.90.80.060.010.040.522.40Bal.
表1  4种实验用镍基粉末高温合金的实测成分 (mass fraction / %)
图1  等离子旋转电极法(PREP)制备粉末形貌,热等静压(HIP)和热处理(HT)锭坯尺寸,及蠕变试样尺寸
图2  热处理后不同Hf和Ta含量合金的显微组织及元素分布
图3  不同Hf和Ta含量合金在不同蠕变条件下的断口体视镜照片
图4  0Hf + 0Ta合金的裂纹源区、裂纹源区与裂纹扩展区交界及裂纹扩展区的断口形貌(a1-a3) 650 oC, 970 MPa (b1-b3) 700 oC, 770 MPa (c1-c3) 750 oC, 580 MPa
图5  不同Hf和Ta含量合金在不同蠕变条件下的蠕变曲线和蠕变速率曲线
Creep conditionAlloytr / h˙ε / s-1
650 oC, 970 MPa0Hf + 0Ta646.0×10-8
0.5Hf + 0Ta1081.4×10-8
0Hf + 2.4Ta3054.5×10-9
0.5Hf + 2.4Ta4751.0×10-9
700 oC, 770 MPa0Hf + 0Ta1125.5×10-9
0.5Hf + 0Ta1693.4×10-9
0Hf + 2.4Ta4541.9×10-9
0.5Hf + 2.4Ta5431.7×10-9
750 oC, 580 MPa0Hf + 0Ta1403.4×10-8
0.5Hf + 0Ta1841.0×10-8
0Hf + 2.4Ta3556.9×10-9
0.5Hf + 2.4Ta3703.5×10-9
表2  各蠕变条件下不同Hf和Ta含量合金的蠕变断裂时间和最小蠕变速率
图6  不同Hf和Ta含量合金的Larson-Miller曲线
图7  不同Hf和Ta含量合金在650 ℃、970 MPa蠕变断裂后显微组织的TEM像及选区电子衍射(SAED)花样
图8  0Hf + 0Ta和0.5Hf + 2.4Ta合金在750 ℃、580 MPa蠕变断裂后显微组织的TEM像
图9  Hf和Ta对热处理态合金中退火孪晶界密度的影响
图10  0Hf + 0Ta合金在650 ℃、970 MPa,700 ℃、770 MPa和750 ℃、580 MPa蠕变断裂后的二次裂纹,及650 ℃、970 MPa蠕变断裂后退火孪晶的TEM像
图11  750 ℃、580MPa蠕变断裂后晶界上析出的M23C6相
Alloy650 oC700 oC750 oC
0Hf + 0Ta113.4117.0120.6
0.5Hf + 0Ta109.7113.3116.9
0Hf + 2.4Ta96.199.7103.4
0.5Hf + 2.4Ta91.695.298.9
表3  各温度下不同Hf和Ta含量合金的层错能 (mJ·m-2)
Alloyf / %[16]d / nm[16]λ / nmδ / %[16]
0Hf + 0Ta39.5112500.049
0.5Hf + 0Ta41.5165520.087
0Hf + 2.4Ta44.3167560.129
0.5Hf + 2.4Ta44.8176590.138
表4  热处理态合金中二次γ′相的体积分数、平均直径、平均间距以及γ与γ′相晶格错配度[16]
Alloy

650 oC,

970 MPa

700 oC,

770 MPa

750 oC,

580 MPa

0Hf + 0Taa1a2a3
0.5Hf + 0Ta0.93a10.94a20.94a3
0Hf + 2.4Ta0.68a10.69a20.70a3
0.5Hf + 2.4Ta0.64a10.66a20.67a3
表5  各蠕变条件下不同Hf和Ta含量合金最小蠕变速率的计算值
1 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
1 张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
doi: 10.11900/0412.1961.2019.00119
2 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
3 Wlodek S T, Kelly M, Alden D. The structure of N18 [A]. Superalloys 1992 [C]. Warrendale: The Minerals, Metals & Materials Society, 1992: 467
4 Wei B, Liu Z M, Nong B Z, et al. Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 867: 158377
5 Olson G B, Jou H J, Jung J, et al. Precipitation model validation in 3rd generation aeroturbine disc alloys [A]. Superalloys 2008 [C]. Warrendale: The Minerals, Metals & Materials Society, 2008: 923
6 Locq D, Nazé L, Franchet J M, et al. Metallurgical optimisation of PM superalloy N19 [J]. MATEC Web of Conferences, 2014, 14: 11007
7 Taylor M P, Evans H E, Stekovic S, et al. The oxidation characteristics of the nickel-based superalloy, RR1000, at temperatures of 700-900 oC [J]. Mater. High Temp., 2012, 29: 145
8 Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy DOE: Chemistry, properties, phase formations and thermal stability [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale: The Minerals, Metals & Materials Society, 2016: 189
9 Smith T M, Zarkevich N A, Egan A J, et al. Utilizing local phase transformation strengthening for nickel-base superalloys [J]. Commun. Mater., 2021, 2: 106
10 Antonov S. Design of modern high Nb-content γ-γ′ Ni-base superalloys [D]. Illinois: The Illinois Institute of Technology, 2017
11 Cochardt A W, Township W, County A, et al. High temperature alloys [P]. US Pat, 3005705, 1961
12 Zhao Y S, Zhang J, Luo Y S, et al. Effects of Hf and B on high temperature low stress creep behavior of a second generation Ni-based single crystal superalloy DD11 [J]. Mater. Sci. Eng., 2016, A672: 143
13 Zhang Y W, Hu B F. Function of microelement Hf in powder metallurgy nickel-based superalloys [J]. Acta Metall. Sin., 2015, 51: 967
doi: 10.11900/0412.1961.2014.00704
13 张义文, 胡本芙. 镍基粉末高温合金中微量元素Hf的作用 [J]. 金属学报, 2015, 51: 967
14 Yang Z K, Wang H, Zhang Y W, et al. Effect of Ta content on high temperature creep deformation behaviors and properties of PM nickel base superalloys [J]. Acta Metall. Sin., 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
14 杨志昆, 王 浩, 张义文 等. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响 [J]. 金属学报, 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
15 Bai J M, Zhang H P, Li X Y, et al. Evolution of creep rupture mechanism in advanced powder metallurgy superalloys with tantalum addition [J]. J. Alloys Compd., 2022, 925: 166713
16 Zhang H P, Bai J M, Li X K, et al. Effect of hafnium and tantalum on the microstructure of PM Ni-based superalloys [J]. J. Mater. Sci., 2022, 57: 6803
17 Zhang H P, Bai J M, Li X K, et al. Effect of Hf and Ta on the tensile properties of PM Ni-based superalloys [J]. J. Alloys Compd., 2023, 932: 167653
18 Du B N, Yang J X, Cui C Y, et al. Effects of grain refinement on the microstructure and tensile behavior of K417G superalloy [J]. Mater. Sci. Eng., 2015, A623: 59
19 Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
20 Viswanathan G B, Sarosi P M, Whitis D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT [J]. Mater. Sci. Eng., 2005, A400-401: 489
21 Bai J M, Zhang H P, Liu J T, et al. Temperature dependence of tensile deformation mechanisms in a powder metallurgy Ni-Co-Cr based superalloy with Ta addition [J]. Mater. Sci. Eng., 2022, A856: 143965
22 Zhang P, Yuan Y, Gu Y F, et al. Creep deformation behavior of a novel precipitate-hardened Ni-Fe-base superalloy at 750 oC [J]. Metall. Mater. Trans., 2020, 51A: 1062
23 Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14: 1479
24 Humphreys F J. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD) [J]. Scr. Mater., 2004, 51: 771
25 Tang Y L, Liu J T, Cheng H W, et al. Effect of hafnium on annealing twin formation in as-hot isostatically pressed nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2019, 772: 949
26 Chen Q, Kawagoishi N, Wang Q Y, et al. Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue [J]. Int. J. Fatigue, 2005, 27: 1227
27 Miao J S, Pollock T M, Jones J W. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature [J]. Acta Mater., 2009, 57: 5964
28 Wang Z C, Wang H, Liu G Q, et al. Effect of Ta on the microstructure of high performance Ni-based powder metallurgy superalloys [J]. Sci. China Technol. Sci., 2019, 62: 1961
29 Hu R, Bai G H, Li J S, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy [J]. Mater. Sci. Eng., 2012, A548: 83
30 Bai J M, Yuan Y, Zhang P, et al. Effect of carbon on microstructure and mechanical properties of HR3C type heat resistant steels [J]. Mater. Sci. Eng., 2020, A784: 138943
31 Sun F, Gu Y F, Yan J B, et al. Creep deformation and rupture mechanism of an advanced wrought Ni Fe-based superalloy for 700 oC class A-USC steam turbine rotor application [J]. J. Alloys Compd., 2016, 687: 389
32 He L Z, Zheng Q, Sun X F, et al. M23C6 precipitation behavior in a Ni-base superalloy M963 [J]. J. Mater. Sci., 2005, 40: 2959
33 Zhang P, Yuan Y, Shen S C, et al. Tensile deformation mechanisms at various temperatures in a new directionally solidified Ni-base superalloy [J]. J. Alloys Compd., 2017, 694: 502
34 Unocic R R, Zhou N, Kovarik L, et al. Dislocation decorrelation and relationship to deformation microtwins during creep of a γ′ precipitate strengthened Ni-based superalloy [J]. Acta Mater., 2011, 59: 7325
35 Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316
36 Kolbe M. The high temperature decrease of the critical resolved shear stress in nickel-base superalloys [J]. Mater. Sci. Eng., 2001, A319-321: 383
37 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
38 Yuan Y, Gu Y F, Zhong Z H, et al. Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature [J]. J. Microsc., 2012, 248: 34
39 Yuan Y, Gu Y F, Cui C Y, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature [J]. Mater. Sci. Eng., 2011, A528: 5106
40 Zhang B B, Tang Y G, Mei Q S, et al. Inhibiting creep in nanograined alloys with stable grain boundary networks [J]. Science, 2022, 378: 659
doi: 10.1126/science.abq7739 pmid: 36356141
41 Peng T, Yang B, Yang G, et al. Stress rupture properties and deformation mechanisms of Nimonic 105 alloy at intermediate temperature [J]. Mater. Sci. Eng., 2020, A777: 139085
42 Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
43 Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
44 Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys [J]. Metall. Trans., 1987, 18A: 1961
45 Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep [J]. Acta Mater., 2005, 53: 4623
46 Kim Y K, Kim D, Kim H K, et al. An intermediate temperature creep model for Ni-based superalloys [J]. Int. J. Plast., 2016, 79: 153
[1] 高瞻, 张泽荣, 程军胜, 王秋良. Nb3Sn超导线材中Ta层的去除及腐蚀机理[J]. 金属学报, 2024, 60(7): 968-976.
[2] 程福来, 罗雪梅, 胡炳利, 张滨, 张广平. 锂离子电池用微米厚度超薄集流体Cu箔和Al箔疲劳强度及损伤行为[J]. 金属学报, 2024, 60(4): 522-536.
[3] 蒋招汉, 邱文婷, 龚深, 李周. 轻质高强高阻尼HfO2@CNT/聚合物/CuAlMn复合材料的制备及性能[J]. 金属学报, 2024, 60(3): 287-298.
[4] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[5] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[7] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[8] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[9] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[10] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[11] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[12] 郝志博, 葛昌纯, 黎兴刚, 田甜, 贾崇林. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[15] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.