Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 757-766    DOI: 10.11900/0412.1961.2022.00109
  研究论文 本期目录 | 过刊浏览 |
Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响
张德印1,2(), 郝旭1, 贾宝瑞1, 吴昊阳1, 秦明礼1,2,3(), 曲选辉1,3
1北京科技大学 新材料技术研究院 北京 100083
2北京科技大学 顺德创新学院 佛山 528399
3北京科技大学 北京材料基因工程高精尖创新中心 北京 100083
Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route
ZHANG Deyin1,2(), HAO Xu1, JIA Baorui1, WU Haoyang1, QIN Mingli1,2,3(), QU Xuanhui1,3
1Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
3Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
Deyin ZHANG, Xu HAO, Baorui JIA, Haoyang WU, Mingli QIN, Xuanhui QU. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. Acta Metall Sin, 2023, 59(6): 757-766.

全文: PDF(3399 KB)   HTML
摘要: 

采用溶液燃烧合成技术制备了不同Y2O3含量(质量分数)的Fe-Y2O3纳米复合粉末,分析了Y2O3含量对制备的复合粉末的微观结构、晶粒尺寸、磁性能和烧结性能的影响。结果表明,制备的Fe-Y2O3纳米复合粉末均呈现由纳米颗粒组成的连通的网状结构,随着Y2O3含量的增加,晶粒尺寸逐渐降低。通过磁性能测试,不含Y2O3的纳米铁粉的饱和磁感应强度为1.97 T,相应的矫顽力为6.4 kA/m。随着Y2O3含量的增加,Fe-Y2O3纳米复合粉末的饱和磁感应强度逐渐降低,矫顽力逐渐增大。当Y2O3含量为2%时,Fe-Y2O3纳米复合粉末的饱和磁感应强度为1.45 T,相应的矫顽力为58.9 kA/m。对制备的纳米粉末进行常压烧结,当Y2O3含量低时,该粉末在较低的烧结温度(700℃)下可以获得较高的相对密度,当Y2O3含量增加到1%或2%时,在高的烧结温度(1300℃)下也难以实现致密化。

关键词 溶液燃烧合成Fe-Y2O3纳米复合粉末Y2O3含量微观结构磁性能    
Abstract

Iron-based metal/ceramic nanocomposite materials have attracted increasing attention owing to their outstanding mechanical, electrical, and magnetic properties with potential applications in many industrial fields. However, several technical routes, such as mechanical alloying, sol-gel, and electrodeposition, have limitations, including lengthy synthesis processes, complex experimental equipment, and expensive raw materials. In view of the urgent demand for high-quality iron-based metal/ceramic magnetic nanocomposites, Fe-Y2O3 nanocomposite powders with different Y2O3 contents (mass fraction) have been prepared using a combustion-based route. The effects of the Y2O3 content on the microstructure, grain size, and magnetic and sintering properties of the nanocomposite powders were examined. The Fe-Y2O3 nanocomposite powders exhibited a connected network structure composed of nanoparticles regardless of the Y2O3 content, but the grain size decreased gradually with increasing Y2O3 content. The magnetic performance test showed that the iron nanopowder without Y2O3 had a saturation magnetic induction and coercivity (Hc) of 1.97 T and 6.4 kA/m, respectively. The saturation magnetic induction of the Fe-Y2O3 nanocomposite powders decreased gradually with increasing Y2O3 content, whereas the Hc increased. The saturation magnetic induction and Hc of the Fe-Y2O3 nanocomposite were 1.45 T and 58.9 kA/m, respectively, at a Y2O3 content of 2%. The as-synthesized Fe-Y2O3 nanocomposite powders were densified by pressureless sintering. When the Y2O3 content was low, the nanocomposites could reach a higher relative density at a lower sintering temperature of 700oC. In contrast, densification was difficult to achieve when the Y2O3 content was increased to 1% or 2% even at a high sintering temperature of 1300oC.

Key wordssolution combustion synthesis    Fe-Y2O3 nanocomposite powder    Y2O3 content    microstructure    magnetic property
收稿日期: 2022-03-11     
ZTFLH:  TG132  
基金资助:北京市自然科学基金项目(2224104);广东省基础与应用基础研究基金项目(2021A1515110202)
通讯作者: 张德印,zhangdeyin@ustb.edu.cn,主要从事先进粉体材料制备与应用等研究
秦明礼,qinml@mater.ustb.edu.cn,主要从事先进粉体材料制备与应用等研究
Corresponding author: ZHANG Deyin, Tel:(010)82375859, E-mail: zhangdeyin@ustb.edu.cn
QIN Mingli, professor, Tel:(010)82375859, E-mail: qinml@mater.ustb.edu.cn
作者简介: 张德印,男,1992年生,博士
图1  不同原料配比凝胶试样的TG-DSC曲线及相应的质谱曲线
图2  不同原料配比所得燃烧产物的XRD谱
图3  不同原料配比所得燃烧产物的SEM像(a) F (b) FY0.2 (c) FY0.5 (d) FY (e) FY2
图4  不同原料配比所得还原产物的XRD谱
SampleCrystalliteSSABsHc
size / nmm2·g-1TkA·m-1
Fe43 ± 0.29.7 ± 0.21.976.4 ± 0.7
Fe-0.2%Y2O340 ± 0.513.7 ± 0.51.8328.7 ± 0.5
Fe-0.5%Y2O337 ± 0.315.6 ± 0.31.7547.8 ± 0.6
Fe-1%Y2O334 ± 0.419.8 ± 0.51.7151.0 ± 0.4
Fe-2%Y2O333 ± 0.222.6 ± 0.41.4558.9 ± 0.7
表1  不同Y2O3含量的Fe-Y2O3纳米复合粉末的晶粒尺寸、比表面积和室温下的磁性能
图5  不同原料配比所得还原产物的XPS全谱图和相应的Y3d窄扫图
图6  不同原料配比所得还原产物的FE-SEM像
图7  不同Y2O3含量纳米复合粉末的室温磁滞回线
图8  常压烧结不同Y2O3含量的Fe-Y2O3纳米复合粉末的相对密度与烧结温度的关系曲线
1 Zhang X F, Harley G, de Jonghe L C. Co-continuous metal-ceramic nanocomposites [J]. Nano Lett., 2005, 5: 1035
pmid: 15943438
2 Fu S R, Yang L J, Li H, et al. Steel fiber-reinforced nonferrous metal matrix composites: A review [J]. Rare Met. Mater. Eng., 2020, 49: 3035
3 Wang H Y, Li C, Li Z G, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
3 王慧远, 李 超, 李志刚 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望 [J]. 金属学报, 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
4 Kota N, Charan M S, Laha T, et al. Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties [J]. Ceram. Int., 2022, 48: 1451
doi: 10.1016/j.ceramint.2021.09.232
5 Wang M F, Deng K R, Lü W, et al. Rational design of multifunctional Fe@γ-Fe2O3@H-TiO2 nanocomposites with enhanced magnetic and photoconversion effects for wide applications: From photocatalysis to imaging-guided photothermal cancer therapy [J]. Adv. Mater., 2018, 30: 1706747
doi: 10.1002/adma.v30.13
6 Cai N, Xia S W, Li X Q, et al. Influence of the ratio of Fe/Al2O3 on waste polypropylene pyrolysis for high value-added products [J]. J. Clean. Prod., 2021, 315: 128240
doi: 10.1016/j.jclepro.2021.128240
7 Onderko F, Birčáková Z, Dobák S, et al. Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method [J]. J. Magn. Magn. Mater., 2022, 543: 168640
doi: 10.1016/j.jmmm.2021.168640
8 Ge L F, Wang W, Peng Z L, et al. Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water [J]. Powder Technol., 2018, 326: 393
doi: 10.1016/j.powtec.2017.12.003
9 Wei X J, Jiang J T, Zhen L, et al. Synthesis of Fe/SiO2 composite particles and their superior electromagnetic properties in microwave band [J]. Mater. Lett., 2010, 64: 57
doi: 10.1016/j.matlet.2009.10.005
10 Torabinejad V, Aliofkhazraei M, Sabour Rouhaghdam A, et al. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating [J]. Mater. Sci. Eng., 2017, A700: 448
11 Raghavendra K G, Dasgupta A, Bhaskar P, et al. Synthesis and characterization of Fe-15 wt.% ZrO2 nanocomposite powders by mechanical milling [J]. Powder Technol., 2016, 287: 190
doi: 10.1016/j.powtec.2015.10.003
12 Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150 pmid: 22019943
13 Vijay R, Nagini M, Sarma S S, et al. Structure and properties of Nano-scale oxide-dispersed iron [J]. Metall. Mater. Trans., 2014, 45A: 777
14 Xu Z Y, Song L L, Zhao Y Y, et al. The formation mechanism and effect of amorphous SiO2 on the corrosion behaviour of Fe-Cr-Si ODS alloy in LBE at 550oC [J]. Corros. Sci., 2021, 190: 109634
doi: 10.1016/j.corsci.2021.109634
15 Liu T, Shen H L, Wang C X, et al. Structure evolution of Y2O3 nanoparticle/Fe composite during mechanical milling and annealing [J]. Progr. Nat. Sci.: Mater. Int., 2013, 23: 434
doi: 10.1016/j.pnsc.2013.06.009
16 Ntola P, Friedrich H B, Mahomed A S, et al. Exploring the role of fuel on the microstructure of VO x /MgO powders prepared using solution combustion synthesis [J]. Mater. Chem. Phys., 2022, 287: 125602
17 Xu C X, Manukyan K V, Adams R A, et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries [J]. Carbon, 2019, 142: 51
doi: 10.1016/j.carbon.2018.10.016
18 Zhang D Y, Qin M L, Huang M, et al. Magnetic properties of evenly mixed Fe-Y2O3 nanocomposites synthesized by a facile wet-chemical based route [J]. J. Magn. Magn. Mater., 2019, 491: 165576
doi: 10.1016/j.jmmm.2019.165576
19 Zhou Q L, Zhou J L, Feng W, et al. Solution combustion synthesis of lithium orthosilicate as the tritium breeder: Effects of microwave power and fuel-to-oxidizer ratio on phase, microstructure and sintering [J]. Ceram. Int., 2021, 47: 22006
doi: 10.1016/j.ceramint.2021.04.219
20 Li F T, Ran J R, Jaroniec M, et al. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion [J]. Nanoscale, 2015, 7: 17590
doi: 10.1039/C5NR05299H
21 Guo H, Zhang Z X, Jiang Z, et al. Catalytic activity of porous manganese oxides for benzene oxidation improved via citric acid solution combustion synthesis [J]. J. Environ. Sci., 2020, 98: 196
doi: 10.1016/j.jes.2020.06.008
22 Varma A, Mukasyan A S, Rogachev A S, et al. Solution combustion synthesis of nanoscale materials [J]. Chem. Rev., 2016, 116: 14493
pmid: 27610827
23 Rashad M M, Rayan D A, Turky A O, et al. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using co-precipitation method [J]. J. Magn. Magn. Mater., 2015, 374: 359
doi: 10.1016/j.jmmm.2014.08.031
24 Sharif M J, Yamauchi M, Toh S, et al. Enhanced magnetization in highly crystalline and atomically mixed bcc Fe-Co nanoalloys prepared by hydrogen reduction of oxide composites [J]. Nanoscale, 2013, 5: 1489
doi: 10.1039/c2nr33467d pmid: 23334346
25 Huang M, Qin M L, Zhang D Y, et al. Facile synthesis of sheet-like Fe/C nanocomposites by a combustion-based method [J]. J. Alloys Compd., 2017, 695: 1870
doi: 10.1016/j.jallcom.2016.11.021
26 Flohrer S, Herzer G. Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited) [J]. J. Magn. Magn. Mater., 2010, 322: 1511
doi: 10.1016/j.jmmm.2009.07.087
[1] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[9] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[10] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[11] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[14] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[15] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.