Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 767-776    DOI: 10.11900/0412.1961.2021.00314
  研究论文 本期目录 | 过刊浏览 |
电弧增材制造2024铝合金的微观组织与力学性能
吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义()
大连理工大学 高性能精密制造全国重点实验室 大连 116024
Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing
WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi()
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
引用本文:

吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
Dongjiang WU, Dehua LIU, Ziao ZHANG, Yilun ZHANG, Fangyong NIU, Guangyi MA. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. Acta Metall Sin, 2023, 59(6): 767-776.

全文: PDF(4014 KB)   HTML
摘要: 

采用电弧增材制造工艺制备了三元Al-Cu-Mg (2024)铝合金成形试样,并对试样的晶粒形貌、物相组成、元素分布与力学性能进行研究。结果表明,2024铝合金成形试样宏观上表现出层状特征,单一沉积层可以分为层间区域与层中区域2部分,晶粒形貌由层中区域的等轴晶转变为层间区域的柱状晶;成形试样微观组织主要包括α-Al、θ-Al2Cu与S-Al2CuMg相;由于增材制造非平衡凝固过程,成形试样出现元素偏析,层中区域Mg元素在Al基体中均匀分布;电弧重熔作用下,层间区域元素偏析严重,Cu元素以共晶组织的形式在晶界偏析,Mg元素出现局部富集;成形试样的平均抗拉强度、屈服强度与断后伸长率分别为(323.5 ± 6.6) MPa、(178.7 ± 6.2) MPa和(9.03 ± 0.67)%,高于铸造退火态2024铝合金的力学性能;由于微观组织的不同,层中区域与层间区域出现不同的裂纹扩展行为,层间区域裂纹沿着共晶组织分布路径扩展,表现为沿晶断裂,层中区域裂纹扩展模式变为穿晶断裂。

关键词 Al-Cu-Mg合金电弧增材制造显微组织力学性能    
Abstract

Owing to its outstanding advantages, such as low specific gravity, high specific strength, and good machinability, 2024 aluminum alloy has been used as various load components in the aerospace field and has become an important lightweight material. The properties of the 2024 aluminum alloy are highly correlated with its microstructures. Accordingly, in this study, 2024 aluminum alloy deposited specimens were fabricated using wire arc additive manufacturing. Further, the microstructures and mechanical properties of the deposited specimens were investigated in different regions. The layered characteristics could be observed macroscopically in the deposited specimens, and a single deposition layer was divided into two regions: interlayer and innerlayer. The grain morphology changed from equiaxed grains in the innerlayer region to columnar grains in the interlayer region. The deposited specimens mainly included α-Al, θ-Al2Cu, and S-Al2CuMg phases. In the nonequilibrium solidification process of additive manufacturing, the deposited specimens presented element segregation. The distribution of Mg in the Al matrix was uniform for the innerlayer region. However, Cu was segregated as eutectics at the grain boundary in the interlayer region. The average tensile strength, yield strength, and elongation of deposited specimens were (323.5 ± 6.6) MPa, (178.7 ± 6.2) MPa, and (9.03 ± 0.67)%, respectively, which were higher than those of cast annealing 2024 aluminum alloy. Owing to the difference in the microstructure, the innerlayer and interlayer regions showed different crack propagation behavior. The cracks in the interlayer region propagated along the distribution path of eutectics, showing intergranular fracture, and the crack propagation mode in the innerlayer region changed to transgranular fracture.

Key wordsAl-Cu-Mg alloy    wire arc additive manufacturing    microstructure    mechanical property
收稿日期: 2021-07-30     
ZTFLH:  TG40  
基金资助:中央高校基本科研业务费专项资金项目(DUT21YG116)
通讯作者: 马广义,gyma@dlut.edu.cn,主要从事激光增材制造、激光精密加工技术与装备研究
Corresponding author: MA Guangyi, professor, Tel:(0411)84707625, E-mail: gyma@dlut.edu.cn
作者简介: 吴东江,男,1964年生,教授,博士
MaterialCuMgMnTiFeSiZnCrAl
2024 alloy standard3.80-4.901.20-1.800.30-0.90≤ 0.15≤ 0.50≤ 0.15≤ 0.15≤ 0.15Bal.
Deposited wire4.591.560.670.090.100.090.050.02Bal.
WAAM deposited specimen4.591.380.660.090.090.090.040.02Bal.
表1  2024铝合金焊丝和电弧增材制造(WAAM)成形件的化学成分 (mass fraction / %)
图1  WAAM 2024铝合金沉积过程示意图和拉伸试样尺寸示意图
图2  2024铝合金WAAM成形试样不同位置的组织形貌(a) macromorphology (b) microstructure of innerlayer region and interlayer region(c, d) enlarged views of region I (c) and II (d), respectively
图3  2024铝合金WAAM成形试样的EBSD分析(a) EBSD image of microstructure (BD—building direction, SD—scanning direction, TD—transverse direction)(b) distribution of grain size (c) distribution of grain boundary misorientation(d) pole figures (e) inverse pole figures (IPFs)
图4  Al-Cu-Mg合金凝固路径及2024铝合金丝材与WAAM成形试样的XRD谱
图5  2024铝合金WAAM成形试样SEM分析
图6  WAAM成形2024铝合金试样层中区域和层间区域的SEM像(a) innerlayer region (b) interlayer region
图7  2024铝合金WAAM成形试样面扫描元素分布
图8  2024铝合金WAAM成形试样和单一沉积层的显微硬度分布
图9  2024铝合金WAAM成形试样室温拉伸曲线和不同方式制备2024铝合金的力学性能比较
图10  2024铝合金WAAM成形试样拉伸断口形貌的SEM像、层间区域SEM像和EDS、层中区域SEM像与EDS
图11  2024铝合金WAAM成形拉伸试样断口裂纹扩展(a) cross section of fracture (b) image of interlayer region (c) image of innerlayer region
1 Starke E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aeosp. Sci., 1996, 32: 131
2 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
2 张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
3 Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
4 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeron. Manuf. Technol., 2018, 61(3): 74
4 李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
5 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
5 顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
6 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
7 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
7 孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
8 Yang G, Peng H J, Li C F, et al. Microstructure and mechanical property research on wire + arc additive manufactured 5356-aluminum alloy [J]. Chin. J. Rare Met., 2020, 44: 249
8 杨 光, 彭晖杰, 李长富 等. 电弧增材制造5356铝合金的组织与性能研究 [J]. 稀有金属, 2020, 44: 249
9 Li C D, Gu H M, Wang W, et al. Microstructure and properties of ZL114A aluminum alloy prepared by wire arc additive manufacturing [J]. Rare Met. Mater. Eng., 2019, 48: 2917
9 李承德, 顾惠敏, 王 伟 等. 电弧增材制造ZL114A铝合金的组织与性能 [J]. 稀有金属材料与工程, 2019, 48: 2917
10 Gu J L, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys [J]. J. Mater. Process. Technol., 2016, 230: 26
doi: 10.1016/j.jmatprotec.2015.11.006
11 Gu J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy [J]. Mater. Sci. Eng., 2016, A651: 18
12 Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1593
doi: 10.1007/s00170-014-6346-x
13 Gu J L, Ding J L, Cong B Q, et al. The influence of wire properties on the quality and performance of wire + arc additive manufactured aluminium parts [J]. Adv. Mater. Res., 2014, 1081: 210
14 Cong B Q, Sun H Y, Peng P, et al. Porosity control of wire + arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process [J]. Rare Met. Mater. Eng., 2017, 46: 1359
14 从保强, 孙红叶, 彭 鹏 等. Al-6.3Cu AC-GTAW电弧增材成形的气孔控制 [J]. 稀有金属材料与工程, 2017, 46: 1359
15 Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg [J]. J. Mater. Process. Technol., 2015, 221: 112
doi: 10.1016/j.jmatprotec.2015.02.013
16 Bai J Y, Fan C L, Yang Y C, et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition [J]. Trans. China Weld. Inst., 2016, 37(6): 124
16 柏久阳, 范成磊, 杨雨晨 等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征 [J]. 焊接学报, 2016, 37(6): 124
17 Ahuja B, Karg M, Nagulin K Y, et al. Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed [J]. Phys. Procedia, 2014, 56: 135
doi: 10.1016/j.phpro.2014.08.156
18 Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2014, A590: 153
19 Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
20 Chakraborty S, Sarkar S, Dutta P. Effect of constitutional supercooling on the numerical solution of species concentration distribution in laser surface alloying [J]. Metall. Mater. Trans., 2001, 32B: 969
21 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
22 Chen F Y, Jie W Q. Study of microsegregation in Al-Cu-Zn ternary alloys by experiment and scheil model [J]. Acta Metall. Sin., 2004, 40: 664
22 陈福义, 介万奇. Al-Cu-Zn合金微观偏析的实验和Scheil模型研究 [J]. 金属学报, 2004, 40: 664
23 Bocklund B, Bobbio L D, Otis R A, et al. Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials [J]. Materialia, 2020, 11: 100689
doi: 10.1016/j.mtla.2020.100689
24 Shi D K. Fundamentals of Materials Science [M]. 2nd Ed., Beijing: China Machine Press, 2003: 232
24 石德珂. 材料科学基础 [M]. 第 2版, 北京: 机械工业出版社, 2003: 232
25 Marlaud T, Deschamps A, Bley F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2010, 58: 248
doi: 10.1016/j.actamat.2009.09.003
26 Bai J Y, Fan C L, Lin S B, et al. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 2615
doi: 10.1007/s00170-016-8633-1
27 Staley J T, Haupin W. Aluminum and aluminum alloys [M]. New York: John Wiley & Sons Inc, 2000: 186
28 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
29 Bai J Y, Fan C L, Lin S B, et al. Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment [J]. J. Mater. Eng. Perform., 2017, 26: 1808
doi: 10.1007/s11665-017-2627-5
30 Liu D H, Wu D J, Ma G Y, et al. Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al-Cu alloy [J]. Virtual Phys. Prototyp., 2020, 15: 445
doi: 10.1080/17452759.2020.1818021
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.