Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 521-528    DOI: 10.11900/0412.1961.2018.00165
  本期目录 | 过刊浏览 |
W高压扭转显微组织演化过程TEM分析
李萍,林泉,周玉峰,薛克敏(),吴玉程
合肥工业大学材料科学与工程学院 合肥 230009
TEM Analysis of Microstructure Evolution Process of Pure Tungsten Under High Pressure Torsion
Ping LI,Quan LIN,Yufeng ZHOU,Kemin XUE(),Yucheng WU
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
引用本文:

李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. 纯W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
Ping LI, Quan LIN, Yufeng ZHOU, Kemin XUE, Yucheng WU. TEM Analysis of Microstructure Evolution Process of Pure Tungsten Under High Pressure Torsion[J]. Acta Metall Sin, 2019, 55(4): 521-528.

全文: PDF(27814 KB)   HTML
摘要: 

在相对较低温度下完成了纯W不同扭转圈数高压扭转实验,通过EBSD、TEM及HRTEM观察了纯W高压扭转过程中的显微组织形貌及微观结构。结果表明,随着等效应变增大,纯W材料显著细化,位错密度增加,非平衡晶界增多。高压扭转过程中小角度晶界向大角度晶界转化现象明显,且位错结构逐渐转移至晶界,细小晶粒内部无明显缺陷。当等效应变增大至5.5时,由于部分晶粒尺寸与位错平均自由程相近,晶粒变形方式由晶内滑移向晶界滑移转变。

关键词 纯W高压扭转微观结构TEM分析    
Abstract

Refractory metal tungsten has wide applications in many fields such as aerospace, national defense, military and nuclear industry due to its excellent comprehensive mechanical properties. As the demand for high-performance materials in the new era is increasing, existing materials cannot meet the performance requirements under extreme conditions. The high pressure torsion (HPT) process can produce severe shear deformation and densify the material effectively, leading to ultrafine-grain structure with non-equilibrium grain boundaries and having a significant effect on improving the overall performance of pure tungsten materials. HPT process is used to prepare an ultrafine-grain material with excellent comprehensive performance, which can broaden the application field of refractory metal tungsten and promote the engineering application of high-performance materials. The HPT experiment was carried out on commercial pure tungsten at a relatively low temperature, and the microstructure evolution during HPT processing at various turning numbers has been investigated by means of EBSD, TEM and HRTEM. It was found that with the strain increasing, the grains were refined significantly, dislocation density and the ratio of non-equilibrium grain boundary increased obviously. Moreover, it was transparent that the low angle grain boundary transform into high angle grain boundary during HPT processing. At the same time, the dislocation structure moved to grain boundary gradually so that there was no obvious defect in fined grains. When the equivalent strain increased to 5.5, the deformation mode of grains transformed from intracrystalline sliding to grain boundary sliding, because the size of some grains was close to the mean free path of dislocation.

Key wordspure tungsten    high pressure torsion    microstructure    TEM analysis
收稿日期: 2018-04-28     
ZTFLH:  TG376.1  
基金资助:国家自然科学基金项目(No.51675154);新世纪优秀人才支持计划项目(No.NCET-13-0765);国际热核聚变实验堆(ITER)计划专项项目(No.2014GB121000)
作者简介: 李 萍,女,1973年生,教授,博士
图1  纯W高压扭转(HPT)工艺原理及试样
图2  纯W在不同扭转圈数下HPT变形试样中晶粒与晶界显微组织的TEM像
图3  纯W在不同扭转圈数下HPT变形前后扫描区域的晶界取向差分布的EBSD像
图4  纯W在HPT变形不同扭转圈数后晶界形貌的TEM和HRTEM分析
图5  HPT变形试样累积等效应变
图6  HPT变形前后纯W的晶界角度分布
图7  纯W高压扭转不同圈数下的晶内和晶界HRTEM像
1 Mishra A. Corrosion study of base material and welds of a Ni-Cr-Mo-W alloy [J]. Acta Metall. Sin. (Eng. Lett.), 2017, 30: 326
2 Lv C C, Liu J X, Li S K, et al. Penetration performance of W-Ni-Fe alloy shaped charge liner [J]. Rare Met. Mater. Eng., 2013, 42: 2337
2 吕翠翠, 刘金旭, 李树奎等. W-Ni-Fe合金药型罩的破甲特性 [J]. 稀有金属材料与工程, 2013, 42: 2337
3 Roth J, Tsitrone E, Loarte A, et al. Recent analysis of key plasma wall interactions issues for ITER [J]. J. Nucl. Mater., 2009, 390-391: 1
4 Zhang P, Zhu Q, Qin H Y, et al. Research progress of high temperature materials for aero-engines [J]. Mater. Rev., 2014, 28(6): 27
4 张 鹏, 朱 强, 秦鹤勇等. 航空发动机用耐高温材料的研究进展 [J]. 材料导报, 2014, 28(6): 27)
5 Zhu L X, Yan Q Z, Lang S T, et al. Research progress of tungsten-base materials as plasma facing materials [J]. Chin. J. Nonferrous Met., 2012, 22: 3522
5 朱玲旭, 燕青芝, 郎少庭等. 钨基面向等离子体材料的研究进展 [J]. 中国有色金属学报, 2012, 22: 3522
6 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
6 吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
7 Li P, Hua R, Xue K M, et al. Research progress in tungsten and its alloys by plastic processing [J]. Rare Met. Mater. Eng., 2016, 45: 529
7 李 萍, 华 睿, 薛克敏等. 钨及其合金塑性加工的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 529
8 Sabbaghianrad S, Langdon T G. A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT [J]. Mater. Sci. Eng., 2014, A596: 52
9 Wei Q, Zhang H T, Schuster B E, et al. Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion [J]. Acta Mater., 2006, 54: 4079
10 Faleschini M, Kreuzer H, Kiener D, et al. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys [J]. J. Nucl. Mater., 2007, 367-370: 800
11 Hao T, Fan Z Q, Zhang T, et al. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing [J]. J. Nucl. Mater., 2014, 455: 595
12 Cui Z Z, Lin Y S, Shi G, et al. Effect of annealing temperature on microstructure and internal stress of high purity tungsten target [J]. Aerosp. Mater. Technol., 2017, 47(4): 63
12 崔子振, 林岩松, 石 刚等. 退火温度对高纯钨靶显微组织和内应力的影响 [J]. 宇航材料工艺, 2017, 47(4): 63)
13 Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion [J]. Acta Mater., 2003, 51: 753
14 Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
15 El-Tahawy M, Huang Y, Choi H, et al. High temperature thermal stability of nanocrystalline 316L stainless steel processed by high-pressure torsion [J]. Mater. Sci. Eng., 2017, A682: 323
16 Harai Y, Kai M, Kaneko K, et al. Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion [J]. Mater. Trans., 2008, 49: 76
17 Xu C, Horita Z, Langdon T G. The evolution of homogeneity in processing by high-pressure torsion [J]. Acta Mater., 2007, 55: 203
18 Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
19 Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation [J]. Phys. Met. Metall., 2014, 115: 139
20 Zhang Y, Ganeev A V, Gao X, et al. Influence of HPT deformation temperature on microstructures and thermal stability of ultrafine-grained tungsten [J]. Mater. Sci. Forum., 2008, 584-586: 1000
21 Zhang Y, Ganeev A V, Wang J T, et al. Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity [J]. Mater. Sci. Eng., 2009, A503: 37
22 Li P, Wang X, Xue K M, et al. Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
23 Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988 [J]. Mater. Sci. Eng., 2016, A652: 325
24 Li P, Lin Q, Wang X, et al. Recrystallization behavior of pure molybdenum powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 367
25 Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density [J]. Appl. Phys. Lett., 2008, 92: 081903
26 Degtyarev M V, Chashchukhina T I, Voronova L M, et al. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion [J]. Acta Mater., 2007, 55: 6039
27 Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion [J]. Chin. J. Mater. Res., 2014, 28: 371
27 蒋婷慧, 刘满平, 谢学锋等. 高压扭转大塑性变形Al-Mg合金中的晶界结构 [J]. 材料研究学报, 2014, 28: 371
28 Staker M R, Holt D L. The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 ℃ [J]. Acta Metall., 1972, 20: 569
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[9] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[12] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[14] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[15] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.