Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1155-1164    DOI: 10.11900/0412.1961.2019.00454
  本期目录 | 过刊浏览 |
31%B4Cp/6061Al复合材料的热变形及加工图的研究
周丽1, 李明1, 王全兆2(), 崔超3, 肖伯律2, 马宗义2
1 烟台大学机电汽车工程学院 烟台 264005
2 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
3 哈尔滨工业大学(威海)材料科学与工程学院 威海 264209
Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites
ZHOU Li1, LI Ming1, WANG Quanzhao2(), CUI Chao3, XIAO Bolv2, MA Zongyi2
1 School of Electromechanical and Vehicle Engineering, Yantai University, Yantai 264005, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China
引用本文:

周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
Li ZHOU, Ming LI, Quanzhao WANG, Chao CUI, Bolv XIAO, Zongyi MA. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. Acta Metall Sin, 2020, 56(8): 1155-1164.

全文: PDF(3927 KB)   HTML
摘要: 

采用Gleeble-3800热模拟试验机对粉末冶金法制备的31%B4Cp/6061Al (体积分数)复合材料进行热压缩行为研究,实验温度和应变速率分别为375~525 ℃和0.001~10 s-1。基于改进的动态材料模型(MDMM)建立了功率耗散率图和热加工图,确定了热加工的稳定区和失稳区,分析了热压缩过程中的微观组织变化。结果表明,31%B4Cp/6061Al复合材料的变形温度和应变速率对流变应力的影响十分显著,流变应力随变形温度的降低或应变速率的升高而增加。确定了31%B4Cp/6061Al复合材料的最优热加工参数所对应的变形温度和应变速率分别为480~525 ℃和0.01~0.04 s-1。加工失稳区主要集中在低温高应变速率区域,并且该区域随应变的增大而增大。热压过程中应变、温度和应变速率对显微组织的变化都有显著影响,应变越大,则晶粒变形越严重,随着变形温度的升高或应变速率的降低,基体内动态再结晶晶粒尺寸明显增大。

关键词 B4Cp/6061Al复合材料热变形加工图微观结构    
Abstract

B4Cp/Al composite has the advantages of light weight, good stability, high neutron absorption capacity and excellent mechanical properties, and is increasingly used in nuclear industry for storage and transportation of spent fuels. However, due to the obvious difference in the mechanical properties between the reinforcement and the aluminum matrix, the deformation of B4Cp/Al composite is quite difficult. In this study, the hot compression behavior of 31%B4Cp/6061Al (volume fraction) composite fabricated by powder metallurgy was investigated in the temperature range of 375~525 ℃ and strain rate range of 0.001~10 s-1 with Gleeble-3800 thermal simulator system. Based on the modified dynamic material model (MDMM), the power dissipation efficiency and processing maps were established, the instability zones and stable area of hot deformation were determined, and the microstructure evolution during hot compression were analyzed. The results show that the temperature and strain rate have significant influences on the flow stress of 31%B4Cp/6061Al composite, and the flow stress increases with decreasing temperature or with increasing strain rate. The optimum processing domains for 31%B4Cp/6061Al composite are at temperatures of 480~525 ℃ with strain rates of 0.01~0.04 s-1. However, the processing instability area is mainly concentrated in low temperature and high strain rate, and increases with the increase of strain. During the hot compressing, the microstructure evolution is influenced by hot processing parameters, such as the strain, temperature and strain rate. The higher the strain is, the more serious the grain deformation is. With increasing deformation temperature or decreasing strain rate, the size of the dynamic recrystallization grain in matrix increases obviously.

Key wordsB4Cp/6061Al composites    hot deformation    processing map    microstructure
收稿日期: 2019-12-27     
ZTFLH:  TG339  
基金资助:国家自然科学基金项目(U1508216);国家自然科学基金项目(51771194);山东省自然科学基金项目(ZR2019MEE074)
作者简介: 周 丽,女,1971年生,教授,博士
图1  热压缩过程示意图
图2  31%B4Cp/6061Al复合材料显微组织的OM像
图3  不同热变形条件下31%B4Cp/6061Al复合材料的真应力-真应变曲线
图4  31%B4Cp/6061Al复合材料在不同变形条件下的峰值应力分布
ε˙ / s-1375 ℃400 ℃425 ℃450 ℃475 ℃500 ℃525 ℃
0.0189.3473.9067.4061.7756.6938.6635.52
0.1107.0092.8986.8076.4570.8160.0152.52
1126.18113.58103.7594.4085.9179.6165.38
10158.00146.00133.39124.92112.96102.0492.53
表1  31%B4Cp/6061Al复合材料在不同变形条件下的峰值应力 (MPa)
图5  不同应变下31%B4Cp/6061Al复合材料的功率耗散图
图6  31%B4Cp/6061Al复合材料在不同应变下的失稳图
图7  31%B4Cp/6061Al复合材料在不同应变下的加工图
StrainDomainT / ℃ε˙ / s-1
0.1I385~4503.16~10
II435~5250.01~1
475~5251~10
III500~5250.01~0.031
0.3I275~4352.80~10
II420~5250.01~0.39
505~5250.39~10
III490~5250.01~0.025
0.5I375~4552.51~10
II426~5250.01~0.1
III480~5250.01~0.039
0.7I375~4502.23~10
II438~5250.01~0.1
III480~5200.01~0.021
表2  31%B4Cp/6061Al复合材料的热加工工艺
图8  31%B4Cp/6061Al复合材料在最优加工区和失稳区热压后的SEM像
图9  31%B4Cp/6061Al复合材料在475 ℃、10 s-1变形条件下压缩变形后的应变场分布
图10  31%B4Cp/6061Al复合材料在475 ℃、10 s-1热压缩条件下不同区域显微组织的OM像
图11  31%B4Cp/6061Al复合材料不同变形条件下试样中心区域显微组织的OM像
[1] Liu B, Huang W M, Huang L, et al. Size-dependent compression deformation behaviors of high particle content B4C/Al composites [J]. Mater. Sci. Eng., 2012, A534: 530
[2] Bie B X, Huang J Y, Su B, et al. Dynamic tensile deformation and damage of B4C-reinforced Al composites: Time-resolved imaging with synchrotron X-rays [J]. Mater. Sci. Eng., 2016, A664: 86
[3] Zhou L, Zhang P F, Wang Q Z, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite [J]. Acta Metall. Sin., 2019, 55: 911
doi: 10.11900/0412.1961.2018.00453
[3] (周 丽, 张鹏飞, 王全兆等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究 [J]. 金属学报, 2019, 55: 911)
doi: 10.11900/0412.1961.2018.00453
[4] Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
[4] (肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59)
doi: 10.11900/0412.1961.2018.00461
[5] Shi W C, Shan D B. Effect of whisker breakage on the forgeability and the tensile properties of the forged 2024Al/Al18B4O33w composite [J]. Mater. Charact., 2018, 135: 303
[6] El-Sabbagh A M, Soliman M, Taha M A, et al. Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting [J]. J. Mater. Process. Technol., 2013, 213: 1669
[7] Raj R. Development of a processing map for use in warm-forming and hot-forming processes [J]. Metall. Trans., 1981, 12A: 1089
[8] Rajamuthamilselvan M, Ramanathan S, Karthikeyan R. Processing map for hot working of SiCp/7075 Al composites [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 668
[9] Hao S M, Xie J P, Wang A Q, et al. Hot deformation behavior and processing map of SiCp/2024Al composite [J]. Rare Met. Mater. Eng., 2014, 43: 2912
[10] Ramanathan S, Karthikeyan R, Ganasen G. Development of processing maps for 2124Al/SiCp composites [J]. Mater. Sci. Eng., 2006, A441: 321
[11] Hao S M, Xie J P, Wang A Q, et al. Hot deformation behaviors of 35%SiCp/2024Al metal matrix composites [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2468
doi: 10.1016/S1003-6326(14)63372-0
[12] Gangolu S, Rao A G, Sabirov I, et al. Development of constitutive relationship and processing map for Al-6.65Si-0.44Mg alloy and its composite with B4C particulates [J]. Mater. Sci. Eng., 2016, A655: 256
[13] Li Y L, Wang W X, Zhou J, et al. Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites [J]. Mater. Charact., 2017, 124: 107
[14] Shao J C, Xiao B L, Wang Q Z, et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.%SiCp/2024Al composite [J]. Mater. Sci. Eng., 2010, A527: 7865
[15] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta. Mater., 2001, 49: 1199
[16] Zhu Y P, Jin P P, Zhao P T, et al. Hot deformation behavior of Mg2B2O5 whiskers reinforced AZ31B magnesium composite fabricated by stir-casting [J]. Mater. Sci. Eng., 2013, A573: 148
[17] Murty S V S N, Sarma M S, Rao B N. On the evaluation of efficiency parameters in processing maps [J]. Metall. Mater. Trans., 1997, 28A: 1581
[18] Huang Z Y, Zhang X X, Xiao B L, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite [J]. J. Alloys Compd., 2017, 722: 145
[19] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204
[20] Peng W W, Zeng W D, Wang Q J, et al. Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of as-cast Ti60 titanium alloy [J]. Mater. Sci. Eng., 2014, A593: 16
[21] Prasad Y V R K. Dynamic materials model: Basis and principles [J]. Metall. Mater. Trans., 1996, 27A: 235
[22] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
[23] Chakravartty J K, Prasad Y V R K, Asundi M K. Processing map for hot working of alpha-zirconium [J]. Metall. Trans., 1991, 22A: 829
[24] Prasad Y V R K. Recent advances in the science of mechanical processing [J]. Indian J. Technol., 1990, 28: 435
[25] Wang C X, Yu F X, Zhao D Z, et al. Hot deformation and processing maps of DC cast Al-15%Si alloy [J]. Mater. Sci. Eng., 2013, A577: 73
[26] Xiao B L, Fan J Z, Tian X F, et al. Hot deformation and processing map of 15%SiCp/2009 Al composite [J]. J. Mater. Sci., 2005, 40: 5757
[27] Zhou L, Cui C, Wang Q Z, et al. Constitutive equation and model validation for a 31 vol.% B4Cp/6061Al composite during hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 1730
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[5] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[6] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[7] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[8] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[9] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[10] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[11] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[12] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[13] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[14] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[15] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.