Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1452-1462    DOI: 10.11900/0412.1961.2020.00088
  本期目录 | 过刊浏览 |
形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究
刘天, 罗锐(), 程晓农, 郑琦, 陈乐利, 王茜
江苏大学材料科学与工程学院 镇江 212013
Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel
LIU Tian, LUO Rui(), CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
Tian LIU, Rui LUO, Xiaonong CHENG, Qi ZHENG, Leli CHEN, Qian WANG. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. Acta Metall Sin, 2020, 56(11): 1452-1462.

全文: PDF(4727 KB)   HTML
摘要: 

利用Gleeble热力模拟试验机对一种形成Al2O3表层的奥氏体(alumina-forming austenitic,AFA)不锈钢在循环载荷条件下进行加速蠕变实验,评估材料的高温蠕变性能,同时获得该合金在高温加速蠕变过程中的组织演化规律。结果表明,采用加速蠕变实验在较短时间内加速完成了常规蠕变实验过程中析出相、位错、孪晶等微观结构的组织演变;但加速蠕变实验过程中AFA合金内大量位错的反复产生与湮灭为难析出第二相提供形核点,降低Laves等难析出第二相的形核驱动力;同时加速蠕变实验所施加的循环应变逐步削弱新型AFA合金中纳米级形变孪晶强化效果,导致评价效果的差异。加速蠕变实验有助于高效评估材料的蠕变性能,但有关实验参数的最佳区间还需要更加深入的研究。

关键词 AFA不锈钢加速蠕变微观结构热模拟    
Abstract

The heat transfer component is a major component of a nuclear power plant, the safety and service life of which are determined based on the long-term creep performance of the heat-transfer pipe material. Several long-term creep tests are usually required to determine the creep life of the heat-transfer pipe materials, which considerably restrict the evaluation efficiency of the material service performance. The objective of this study is to investigate the feasibility of accelerated creep test (ACT) to reduce the time required for evaluating the creep properties of materials. A alumina-forming austenitic (AFA) stainless steel was prepared, and the ACT was performed on a Gleeble thermal simulator. Based on the ACT developed and realized on the Gleeble thermal simulator, damage accumulation was realized by applying elastic-plastic tensile and compressive strains on the ACT specimen to simulate the accelerated changes in the microstructure of the alloy that can be usually observed during a conventional creep test (CT). The average stress with respect to all the cyclic stress relaxation stages in the ACT was considered to be the initial stress of the conventional CT, and a creep fracture test was conducted on the alloy sample. Results revealed that the ACT accelerated the microstructure evolution of the precipitated phases, dislocations, twins, and so on in a short time. Nevertheless, the repeated generation and annihilation of a large number of dislocations in the AFA alloy during the ACT provided the nucleation point and reduced the driving force associated with the nucleation of the precipitated second phase, including the Laves phase. In addition, the cyclic strain applied during the ACT will reduce the strengthening effect of the nanoscale deformation twins in the AFA alloy, resulting in differences in the evaluation effect. Thus, ACT is useful for the efficient evaluation of the creep properties of materials; however, the optimal range of test parameters must be further investigated.

Key wordsAFA stainless steel    accelerated creep    microstructure    thermal simulation
收稿日期: 2020-03-19     
ZTFLH:  TG146.1  
基金资助:中国博士后科学基金项目(2019M661738);江苏省重点研发计划项目(BE2017127);江苏省高等学校自然科学研究面上项目(19KJB430001)
作者简介: 刘 天,男,1993年生,博士生
图1  加速蠕变实验载荷曲线和失效试样形貌
图2  形成Al2O3表层的奥氏体(AFA)不锈钢的XRD谱
图3  AFA不锈钢固溶组织的OM像、SEM像和第二相的EDS
图4  在600 ℃、循环应变为0.135条件下的加速蠕变应力-时间曲线
图5  在650 ℃和循环应变分别为0.120、0.135和0.150条件下的加速蠕变应力-时间曲线
图6  在700 ℃、循环应变为0.120条件下的加速蠕变应力-时间曲线
图7  加速蠕变实验保载时的应力-时间曲线
Sample No.Temperature / ℃Cyclic strainσa (σc) / MPaPACT / MPaPCT / MPaPCT/PACT
16000.135340163.64178.911.09
26500.120290171.58190.411.11
36500.135320169.28186.971.10
46500.150340158.96180.271.13
57000.120260173.60190.931.10
表1  加速蠕变与常规蠕变对比结果
图8  加速蠕变实验后AFA不锈钢中析出相形貌的TEM像和SAED花样
图9  加速蠕变实验后AFA不锈钢微观组织的TEM像
图10  加速蠕变实验后AFA不锈钢中形成的孪晶结构的TEM像
Temperature / ℃Experiment (strain)MCM23C6M6CLavesB2γ'
600ACT (0.135)
CT
650ACT (0.120)
ACT (0.135)
ACT (0.150)
CT
700ACT (0.120)
CT
表2  加速蠕变与常规蠕变实验后AFA不锈钢中析出相对比结果
图11  利用JMatPro计算的AFA不锈钢中的平衡相
图12  加速蠕变实验后小尺寸形变孪晶结构的HRTEM像、区域A的Fourier变换和局部放大图
图13  形变孪晶位错组态
[1] Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
doi: 10.1126/science.1137711 pmid: 17446398
[2] Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates [J]. Intermetallics, 2008, 16: 453
doi: 10.1016/j.intermet.2007.12.005
[3] Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. J. Nucl. Mater., 2010, 399: 231
[4] Bei H, Yamamoto Y, Brady M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels [J]. Mater. Sci. Eng., 2010, A527: 2079
[5] Leitner H, Schober M, Schnitzer R. Splitting phenomenon in the precipitation evolution in an Fe-Ni-Al-Ti-Cr stainless steel [J]. Acta Mater., 2010, 58: 1261
[6] Iseda A, Okada H, Semba H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers [J]. Energy Mater., 2007, 2: 199
[7] Kim W G, Yoon S N, Ryu W S. Application and standard error analysis of the parametric methods for predicting the creep life of type 316LN SS [J]. Key. Eng. Mater., 2005, 297-300: 2272
[8] Hart R V. Assessment of remaining creep life using accelerated stress-rupture tests [J]. Met. Technol., 1976, 3: 1
doi: 10.1179/030716976803391746
[9] Penny R K, Marriott D L. Design for Creep [M]. London: Chapman & Hall, 1995: 40
[10] Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley & Sons, 1987: 1
[11] Yuan C, Guo J T, Yang H C. Cyclic creep behavior of directionally solidified nickel-base superalloy DZ17G [J]. Acta Metall. Sin., 1999, 35: 942
[11] (袁 超, 郭建亭, 杨洪才. 定向凝固镍基高温合金DZ17G的循环蠕变行为 [J]. 金属学报, 1999, 35: 942)
[12] Nechache A, Bouzid A H. The effect of cylinder and hub creep on the load relaxation in bolted flanged joints [J]. J. Pressure Vessel Technol., 2008, 130: 031211
[13] Gjestland H, Nussbaum G, Regazzoni G, et al. Stress-relaxation and creep behaviour of some rapidly solidified magnesium alloys [J]. Mater. Sci. Eng., 1991, A134: 1197
[14] Zhou Y M, Zhao Z P, Li H L. The microstructure and stress ralaxation property of 12%Cr steel [J]. Mater. Mech. Eng., 1992, 16: 27
[14] (周晔明, 赵中平, 李感琳. 12%Cr钢的组织与应力松弛性能 [J]. 机械工程材料, 1992, 16: 27)
[15] Mandziej S T, Vyrostkova A, Solar M. Accelerated creep testing of new creep-resisting weld metals [J]. Weld. World, 2010, 54: R160
[16] Mandziej S T. Accelerated microstructure transformation caused by thermal-mechanical fatigue [J]. Mater. Sci. Forum, 2012, 706-709: 871
[17] Kasl J, Jandová D, Mandziej S T, et al. Comparison of results of accelerated and conventional creep tests of dissimilar weld joint of steels FB2 and F [J]. Mater. Sci. Forum, 2017, 891: 322
[18] Mandziej S T, Výrostková A. Evolution of Cr-Mo-V weld metal microstructure during creep testing—Part 1: P91 material [J]. Weld. World, 2008, 52: 3
[19] Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 801
[20] Cadek J. Creep in Metallic Materials [M]. Amsterdam: Elsevier, 1988: 33
[21] Zurob H S, Hutchinson C R, Brechet Y, et al. Modeling recrystallization of microalloyed austenite: Effect of coupling recovery, precipitation and recrystallization [J]. Acta Mater., 2002, 50: 3077
[22] Heilmaier M, Reppich B. Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach [J]. Metall. Mater. Trans., 1996, 27A: 3861
[23] Wang W Z, Buhl P, Klenk A, et al. Influence of high-temperature dwell time on creep-fatigue behavior in a 1000 MW steam turbine rotor [J]. Eng. Fract. Mech., 2016, 166: 1
[24] Zhou D Q, Xu X Q, Mao H H, et al. Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures [J]. Mater. Sci. Eng., 2014, A594: 246
[25] Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure [J]. Scr. Mater., 2008, 59: 963
[26] Brady M P, Yamamoto Y, Muralidharan G, et al. Deployment of alumina forming austenitic (AFA) stainless steel [R]. Oak Ridge:Oak Ridge National Laboratory, 2013: 28
[27] Rodney D. Molecular dynamics simulation of screw dislocations interacting with interstitial frank loops in a model FCC crystal [J]. Acta Mater., 2004, 52: 607
[28] Lv X Z, Zhang J X. Core structure of a <100> interfacial superdislocations in a nickel-base superalloy during high-temperature and low-stress creep [J]. Mater. Sci. Eng., 2017, A683: 9
[29] Brager H R, Straalsund J L. Frank loop development in neutron-irradiated cold-worked type 316 stainless steel [J]. J. Nucl. Mater., 1973, 47: 105
[30] Karaman I, Sehitoglu H, Gall K, et al. On the deformation mechanisms in single crystal hadfield manganese steels [J]. Scr. Mater., 1998, 38: 1009
[31] Broek D. Elementary Engineering Fracture Mechanics [M]. Netherlands: Springer, 1982: 56
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[14] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[15] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.