Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 291-300    DOI: 10.11900/0412.1961.2019.00314
  研究论文 本期目录 | 过刊浏览 |
部分再结晶退火对无取向硅钢的磁性能与力学性能的影响
于雷,罗海文()
北京科技大学冶金与生态工程学院 北京 100083
Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel
YU Lei,LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(20406 KB)   HTML
摘要: 

通过显微组织表征和磁性能、力学性能检测等实验,研究了含Nb高强无取向硅钢在900 ℃以下退火时的组织、织构、力学性能与磁性能的变化。在700~850 ℃范围内,随着退火温度增加,冷轧板回复并逐步发生部分再结晶,同时α织构总体趋于增强而γ织构减弱;而在900 ℃退火时发生完全再结晶,α织构受到抑制而γ织构显著增强。随着退火温度升高,由于回复和再结晶程度不断增强,位错密度显著降低和析出相的固溶、粗化,导致强度下降和塑性增强,高频铁损也显著降低。磁感应强度由α织构强度决定,850 ℃退火时,冷轧组织大部分发生再结晶,α织构最强,可以获得力学性能和磁性能的最佳匹配,此时磁感应强度B50最高为1.572 T,高频铁损P1.0/400为33.26 W/kg,屈服强度约为600 MPa,该高屈服强度主要来自位错强化、析出强化和细晶强化等综合贡献。

关键词 高强度无取向硅钢再结晶织构磁性能力学性能    
Abstract

With the rapid development of high-speed motors, traditional non-oriented silicon steel is difficult to meet its strength requirements. High strength enables resistance to deformation and fatigue fracture induced by centrifugal force. In this work, Nb element is added to traditional non-oriented silicon steel to improve its strength without greatly sacrificing good magnetism. The previous research on Nb-containing high strength non-oriented silicon steel showed that the annealing at high temperature led to good magnetic properties but poor mechanical properties. In order to improve the strength of the steel, the annealing temperature was decreased to make part of the dislocation structure retained in the cold rolled material. The influences of annealing below 900 ℃ on the microstructures, texture, magnetic and mechanical properties of cold rolled Nb-alloyed non-oriented electrical steel were investigated in this work. The increase of annealing temperature promoted recovery at 700~750 ℃ and led to a partial recrystallization with higher fraction at 800~850 ℃; meanwhile, α texture component was enhanced but γ texture suppressed with the increasing temperature. In contrast, the annealing at 900 ℃ resulted in a complete recrystallization, stronger γ but weaker α texture component. Higher annealing temperature produced lower strength and higher ductility as expected, due to dislocations annihilated by recovery and recrystallization, which also led to lower high-frequency iron loss. The value of magnetic induction B50 corresponds well with the intensity of α texture in the annealed steel, and reaches the maximum value at 850 ℃ due to the most intense α texture formed, at which the best combination of mechanical and magnetic properties is also achieved, including the value of magnetic flux B50 (1.572 T), high-frequency iron loss P1.0/400 (33.26 W/kg) and yield strength about 600 MPa, the latter is attributed to the multiple strengthening mechanisms including dislocation, precipitation and grain refinement strengthening.

Key wordshigh strength non-oriented silicon steel    recrystallization    texture    magnetic property    mechanical property
收稿日期: 2019-09-25     
ZTFLH:  TG142.1  
通讯作者: 罗海文     E-mail: luohaiwen@ustb.edu.cn
Corresponding author: Haiwen LUO     E-mail: luohaiwen@ustb.edu.cn
作者简介: 于 雷,男,1992年生,硕士生

引用本文:

于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
Lei YU, Haiwen LUO. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel. Acta Metall Sin, 2020, 56(3): 291-300.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00314      或      https://www.ams.org.cn/CN/Y2020/V56/I3/291

图1  含Nb无取向硅钢经不同工艺退火后的OM像
图2  含Nb无取向硅钢经退火后的EBSD晶界图与取向分布图
图3  含Nb无取向硅钢析出的富Nb相粒子在不同温度退火下的演变
T / ℃X / nmf / %σPS / MPa
70026.550.64129
75033.850.4287
80034.410.2262
85054.870.1637
90036.850.1345
表1  不同退火温度的富Nb析出相粒子尺寸、体积分数与计算的析出强化量
图4  含Nb无取向硅钢经不同工艺退火后的SEM像及Nb元素分布图
图5  含Nb无取向硅钢冷轧板和不同退火工艺后织构取向分布函数的φ2=45°截面图
图6  不同工艺退火后含Nb无取向硅钢冷轧后的织构组
图7  含Nb无取向硅钢经不同工艺退火后获得的工频铁损(P1.5/50)、高频铁损(P1.0/400)、磁感应强度(B50)及力学性能
图8  α织构与磁感应强度的关系
图9  各强化机制在不同温度退火后对强度的贡献
[1] Sha Y H, Sun C, Zhang F, et al. Strong cube recrystallization texture in silicon steel by twin-roll casting process [J]. Acta Mater., 2014, 76: 106
[2] Zhang N, Yang P, Mao W M. Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability [J]. J. Magn. Magn. Mater., 2016, 397: 125
[3] Gong J, Luo H W. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles [J]. J. Mater. Eng., 2015, 43(6): 102
[3] 龚 坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展 [J]. 材料工程, 2015, 43(6): 102
[4] Pan Z D, Xiang L, Zhang C, et al. Development of high-strength non-oriented electrical steel by TSCR [J]. Iron Steel Van. Tit., 2013, 34(4): 78
[4] 潘振东, 项 利, 张 晨等. TSCR 试制高强度无取向电工钢 [J]. 钢铁钒钛, 2013, 34(4): 78
[5] Wang Y Q, Zhang X M, He Z, et al. Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting [J]. Mater. Sci. Eng., 2017, A703: 340
[6] Lu Y K, Zu G Q, Luo L, et al. Investigation of microstructure and properties of strip-cast 4.5 wt% Si non-oriented electrical steel by different rolling processes [J]. J. Magn. Magn. Mater., 2019, 497: 165975
[7] Tanaka I, Yashiki H, Iwamoto S, et al. Development of high strength electrical steel SXRC of resource-saving design [J]. J. Iron Steel Res. Int., 2011, 6: 15
[8] Liu B, Song X L, Zhu R Q, et al. Effect of niobium on goss texture evolution of low temperature orientation silicon steel [J]. Trans. Mater. Heat Treat., 2017, 38(11): 71
[8] 刘 彪, 宋新莉, 朱瑞琪等. Nb对低温取向硅钢高斯织构演变的影响 [J]. 材料热处理学报, 2017, 38(11): 71
[9] Huang J, Luo H W. Influence of annealing process on microstructures, mechanical and magnetic properties of Nb-containing high-strength non-oriented silicon steel [J]. Acta Metall. Sin., 2018, 54: 377
[9] 黄 俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响 [J]. 金属学报, 2018, 54: 377
[10] Honda A, Senda K, Sadahiro K. Electrical steel for motors of electric and hybrid vehicles [J]. Kawasaki Steel Tech. Rep., 2002, 34: 85
[11] Goldschmidt H J. The constitution of the iron-niobium-silicon system [J]. J. Iron Steel Inst., 1960, 194: 169
[12] Raghavan V, Ghosh G. The Fe-Nb-Si (iron-niobium-silicon) system [J]. Trans. Indian Inst. Met., 1984, 37: 421
[13] Raghavan V. Phase Diagrams of Ternary Iron Alloys [M]. Metals Park, Ohio: ASM International, 1987: 226
[14] Singh B N, Gupta K P. Laves and μ phases in the Nb-Fe-Si and Nb-Co-Si systems [J]. Metall. Trans., 1972, 3: 1427
[15] Wang D, Yang S Y, Yang M J, et al. Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system [J]. J. Alloys Compd., 2014, 605: 183
[16] Muraki M, Toge T, Sakata K, et al. Formation mechanism of {111} recrystallization texture in ferritic steels [J]. Tetsu Hagané, 1999, 85: 751
[16] 村木 峰男, 峠 哲雄, 坂田 敬, 待って. フェライト鋼の{111}再結晶集合組織生成機構の-考察. 鉄と鋼, 1999, 85: 751
[17] Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J]. Acta Mater., 2003, 51: 3037
[18] Hutchinson W B. Development of textures in recrystallization [J]. Met. Sci., 1974, 8: 185
[19] Park J T, Szpunar J A. Texture development during grain growth in nonoriented electrical steels [J]. ISIJ Int., 2005, 45: 743
[20] Jenkins K, Lindenmo M. Precipitates in electrical steels [J]. J. Magn. Magn. Mater., 2008, 320: 2423
[21] Li M, Xiao Y D, Wang W, et al. Effect of annealing parameter on microstructure and magnetic properties of cold rolled non-oriented electrical steel [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 74
[22] Zhao Y H, Zhu G H, Wang L T, et al. Effect of annealing temperature on properties of thin specification non-oriented electric steel [J]. Metall. Funct. Mater., 2012, 19(2): 22
[22] 赵亚慧, 朱国辉, 王立涛等. 退火温度对CSP生产薄规格无取向电工钢性能的影响 [J]. 金属功能材料, 2012, 19(2): 22
[23] Yang F, Xiong C G, Xiang L, et al. Effect of annealing time on microstructure of non-oriented electrical steel 50W600 [J]. Hot Work. Technol., 2015, 44: 208
[23] 杨 帆, 熊晨光, 项 利等. 退火时间对无取向电工钢50W600组织的影响 [J]. 热加工工艺, 2015, 44: 208
[24] Zhang N, Yang P, Mao W N. {001}<120>-{113}<361> recrystallization textures induced by initial {001} grains and related microstructure evolution in heavily rolled electrical steel [J]. Mater. Charact., 2016, 119: 225
[25] Sidor J J, Verbeken K, Gomes E, et al. Through process texture evolution and magnetic properties of high Si non-oriented electrical steels [J]. Mater. Charact., 2012, 71: 49
[26] Zu G Q, Zhang X M, Zhao J W, et al. Analysis of {411}<148> recrystallisation texture in twin-roll strip casting of 4.5 wt% Si non-oriented electrical steel [J]. Mater. Lett., 2016, 180: 63
[27] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[28] Ungár T, Gubicza J, Ribárik G, et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals [J]. J. Appl. Crystallogr., 2001, 34: 298
[29] Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction [J]. Acta Mater., 2011, 59: 4314
[30] Ungár T, Tichy G. The effect of dislocation contrast on X-ray line profiles in untextured polycrystals [J]. Phys. Status Sol., 1999, 171A: 425
[31] Yin F, Hanamura T, Umezawa O, et al. Phosphorus-induced dislocation structure variation in the warm-rolled ultrafine-grained low-carbon steels [J]. Mater. Sci. Eng., 2003, A354: 31
[32] Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
[33] Kunieda T, Nakai M, Murata Y, et al. Estimation of the system free energy of martensite phase in an Fe-Cr-C ternary alloy [J]. ISIJ Int., 2005, 45: 1909
[34] Gladman T. The Physical Metallurgy of Microalloyed Steels [M]. London: Maney Pub, 1997: 40
[35] Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Science Publishers, 1978: 63
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.