|
|
MoNb改性FeCrAl不锈钢高温组织演变和力学性能 |
温冬辉1, 姜贝贝2, 王清3( ), 李相伟1, 张鹏1, 张书彦1( ) |
1.东莞材料基因高等理工研究院 东莞 523808 2.广东工业大学 分析测试中心 广州 510006 3.大连理工大学 材料科学与工程学院 大连 116024 |
|
Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel |
WEN Donghui1, JIANG Beibei2, WANG Qing3( ), LI Xiangwei1, ZHANG Peng1, ZHANG Shuyan1( ) |
1.Centre of Excellence for Advanced Materials, Dongguan 523808, China 2.Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China 3.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
Donghui WEN,
Beibei JIANG,
Qing WANG,
Xiangwei LI,
Peng ZHANG,
Shuyan ZHANG.
Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. Acta Metall Sin, 2022, 58(7): 883-894.
1 |
Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel [J]. Prog. Nucl. Energy, 2012, 57: 71
doi: 10.1016/j.pnucene.2011.10.008
|
2 |
Rebak R B. Advanced steels for accident tolerant fuel cladding in current light water reactors [A]. Energy Materials 2014 [C]. New York: Springer, 2014: 433
|
3 |
Baba M. Fukushima accident: What happened? [J]. Radiat. Meas., 2013, 55: 17
doi: 10.1016/j.radmeas.2013.01.013
|
4 |
Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
|
5 |
Bragg-Sitton S. Development of advanced accident-tolerant fuels for commercial LWRs [J]. Nucl. News, 2014, 57: 83
|
6 |
Robb K R. Analysis of the FeCrAl accident tolerant fuel concept benefits during BWR station blackout accidents [A]. 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics [C]. Chicago, IL, USA: Oak Ridge National Lab. (ORNL), 2015: 1183
|
7 |
Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
|
8 |
Kaneda J, Kasahara S, Kuniya J, et al. General corrosion properties of titanium based alloys for the fuel claddings in the supercritical water-cooled reactor [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors [C]. Salt Lake City, UT: The Minerals, Metals & Materials Society, 2005: 1409
|
9 |
Opila E J. Volatility of common protective oxides in high-temperature water vapor: Current understanding and unanswered questions [J]. Mater. Sci. Forum, 2004, 461-464: 765
doi: 10.4028/www.scientific.net/MSF.461-464.765
|
10 |
Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure [J]. J. Nucl. Mater., 2012, 427: 396
doi: 10.1016/j.jnucmat.2012.05.007
|
11 |
Liu J K, Zhang X H, Yun D. A complete review and a prospect on the candidate materials for accident tolerant fuel claddings [J]. Mater. Rev., 2018, 32A: 1757
|
11 |
刘俊凯, 张新虎, 恽 迪. 事故容错燃料包壳候选材料的研究现状及展望 [J]. 材料导报, 2018, 32A: 1757
|
12 |
Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J]. J. Nucl. Mater., 2014, 448: 420
doi: 10.1016/j.jnucmat.2013.06.041
|
13 |
Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy, 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
|
14 |
Rebak R B. Alloy selection for accident tolerant fuel cladding in commercial light water reactors [J]. Metall. Mater. Trans., 2015, 2E: 197
|
15 |
Field K G, Snead M A, Yamamoto Y, et al. Handbook on the material properties of FeCrAl alloys for nuclear power production applications (FY18 Version: Revision 1) [R]. Oak Ridge, TN (United States): Oak Ridge National Lab. (ORNL), 2018
|
16 |
Unocic K A, Yamamoto Y, Pint B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy [J]. Oxid. Met., 2017, 87: 431
doi: 10.1007/s11085-017-9745-1
|
17 |
Ejenstam J, Thuvander M, Olsson P, et al. Microstructural stability of Fe-Cr-Al alloys at 450-550oC [J]. J. Nucl. Mater., 2015, 457: 291
doi: 10.1016/j.jnucmat.2014.11.101
|
18 |
Capdevila C, Miller M K, Chao J. Phase separation kinetics in a Fe-Cr-Al alloy [J]. Acta Mater., 2012, 60: 4673
doi: 10.1016/j.actamat.2012.05.022
|
19 |
Edmondson P D, Briggs S A, Yamamoto Y, et al. Irradiation-enhanced α' precipitation in model FeCrAl alloys [J]. Scr. Mater., 2016, 116: 112
doi: 10.1016/j.scriptamat.2016.02.002
|
20 |
Gao S X, Li W J, Chen P, et al. Study on irradiation behavior of fuel rods with FeCrAl cladding [J]. Nucl. Power Eng., 2017, 38(5): 175
|
20 |
高士鑫, 李文杰, 陈 平 等. FeCrAl 包壳燃料棒辐照行为研究 [J]. 核动力工程, 2017, 38(5): 175
|
21 |
Yamamoto Y, Gussev M N, Kim B, et al. Optimized properties on base metal and thin-walled tube of Generation II ATF FeCrAl [R]. Oak Ridge, TN (United States): Oak Ridge National Lab. (ORNL), 2015
|
22 |
Morachevskii A G. Professor Gustav Tammann (To 140th birthday anniversary) [J]. Russ. J. Appl. Chem., 2001, 74: 1610
doi: 10.1023/A:1017420113016
|
23 |
Motta A T, Yilmazbayhan A, da Silva M J G, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities [J]. J. Nucl. Mater., 2007, 371: 61
doi: 10.1016/j.jnucmat.2007.05.022
|
24 |
Yamamoto Y, Yang Y, Field K G, et al. Letter report documenting progress of second generation ATF FeCrAl alloy fabrication [R]. Oak Ridge, TN (United States): Oak Ridge National Lab. (ORNL), 2014
|
25 |
Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
|
26 |
Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
doi: 10.1016/j.actamat.2017.11.027
|
27 |
Niu B, Wang Z H, Wang Q, et al. Dual-phase synergetic precipitation in Nb/Ta/Zr Co-modified Fe-Cr-Al-Mo alloy [J]. Intermetallics, 2020, 124: 106848
doi: 10.1016/j.intermet.2020.106848
|
28 |
Zheng J Y, Jia Y Z, Du P N, et al. Control of Laves precipitation in a FeCrAl-based alloy through severe thermomechanical processing [J]. Materials, 2019, 12: 2939
doi: 10.3390/ma12182939
|
29 |
Tang R Z, Tian R Z. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University, 2009: 535
|
29 |
唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009: 535
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|