Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 895-904    DOI: 10.11900/0412.1961.2021.00362
  研究论文 本期目录 | 过刊浏览 |
CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响
孙阳庭, 李一唯, 吴文博, 蒋益明(), 李劲
复旦大学 材料科学系 上海 200433
Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg
SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming(), LI Jin
Department of Materials Science, Fudan University, Shanghai 200433, China
引用本文:

孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
Yangting SUN, Yiwei LI, Wenbo WU, Yiming JIANG, Jin LI. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. Acta Metall Sin, 2022, 58(7): 895-904.

全文: PDF(3259 KB)   HTML
摘要: 

通过溶液调制的方法对C70S6非调质钢及其掺Ca、Mg样品进行了动电位极化曲线测试,并对测试前后的样品进行了SEM-EDS表征,揭示了夹杂物对非调质钢点蚀行为的影响。结果表明,MnS夹杂易作为活性位点诱发点蚀,而掺杂Ca、Mg元素使得夹杂物分布更弥散,MnS含量更低,相应的点蚀抗性也更高。

关键词 非调质钢夹杂物点蚀    
Abstract

As one of the energy-saving steels, non-quenched and tempered steel commonly requires the addition of alloying elements to improve its properties. The inclusions related to those elements have significant influence on the properties of the steels. In this work, the potentiodynamic polarization curves of C70S6 non-quenched and tempered steel and its Mg-Ca doped samples were measured by solution modification, and the samples before and after the test were characterized by SEM-EDS. The results show that the MnS inclusions in the samples act as active sites for pitting. The doped Ca and Mg elements make the distribution of inclusions more dispersed and the content of MnS in each inclusion lower, leading to the better pitting resistance of the doped specimens.

Key wordsnon quenched and tempered steel    inclusion    pitting corrosion
收稿日期: 2021-08-30     
ZTFLH:  TG174.3  
基金资助:国家重点研发计划项目(2018YFB0704400);国家自然科学基金项目(51901046)
作者简介: 孙阳庭,男,1991年生,副研究员,博士
Inclusion typeNumber0-2 μm2-5 μm5-10 μm> 10 μm
MnS4750248720641981
MgO-MnS127320
CaO-MnS1810800
Al2O3-MnS105633570
Spinel-MnS77344030
Aluminate-MnS1576876130
Others2311840
Total5142268022342271
表1  C70S6非调质钢中夹杂物类型、数量及尺寸分布
Inclusion typeNumber0-2 μm2-5 μm5-10 μm> 10 μm
MnS677449491777480
MgO-MnS62392210
CaO-MnS32100
Al2O3-MnS2071426230
Spinel-MnS2301616720
Aluminate-MnS445299136100
Others49311710
Total777056232082650
表2  C70S6-CaMg非调质钢中夹杂物类型、数量及尺寸分布
图1  C70S6及C70S6-CaMg非调质钢中MnS夹杂物等效直径分布图
图2  C70S6夹杂形貌夹杂物的微观形貌及EDS元素分布图
图3  C70S6-CaMg夹杂形貌及EDS元素分布图
图4  不同碱性条件下409L不锈钢的极化曲线
图5  不同pH值下纯Fe的极化曲线
图6  pH = 12.6时不同Cl-浓度[Cl-]下纯Fe的开路电位(OCP)和极化曲线
图7  pH = 12.6、[Cl-] = 1 mol/L条件下Fe、C70S6和C70S6-CaMg的OCP和极化曲线
图8  pH = 12、不同Cl-浓度下C70S6-CaMg的OCP和极化曲线
图9  pH = 12、[Cl-] = 0.1 mol/L条件下C70S6及C70S6-CaMg样品的OCP和极化曲线
图10  C70S6-CaMg和C70S6极化曲线测试后的蚀坑形貌
图11  pH = 12.3、[Cl-] = 0.1 mol/L条件下C70S6和C70S6-CaMg的极化曲线
图12  pH = 12.3、[Cl-] = 0.1 mol/L时,C70S6-CaMg及C70S6的蚀坑形貌
图13  C70S6和C70S6-CaMg样品经恒电位极化后的OM像
图14  C70S6主蚀坑形貌及EDS元素分布图
图15  C70S6夹杂蚀坑形貌及EDS元素分布图
图16  C70S6主蚀坑成分及夹杂蚀坑成分
图17  C70S6-CaMg夹杂蚀坑形貌及EDS元素分布图
1 Li X C. Accelerate implementation of green manufacturing of the steel industry to improve level of green development [J]. Metall. Econ. Manage., 2019, (2): 4
1 李新创. 加快钢铁“绿色制造”提升绿色发展水平 [J]. 冶金经济与管理, 2019, (2): 4
2 Luo Z M. Application and prospect of non-quenched tempered steel [J]. Fujian Metall., 2018, 47(4): 52
2 罗灶明. 非调质钢的应用及展望 [J]. 福建冶金, 2018, 47(4): 52
3 Zhang Q, Ma Q. Application status and prospect of non-quenched and tempered steel in construction machinery [J]. MW Met. Form., 2014, (15): 62
3 张 坤, 马 强. 非调质钢在工程机械上的应用现状及展望 [J]. 金属加工 (热加工), 2014, (15): 62
4 Wu W. Application and development of non-quenched and tempered steel for automotive parts [J]. World Iron Steel, 2009, 9(4): 62
4 吴 玮. 汽车零部件用非调质钢的应用和发展 [J]. 世界钢铁, 2009, 9(4): 62
5 Liu S H, Wang X H, Dai G W, et al. Investigation on non-metallic inclusions in hot forging steels of high cleanliness [J]. Iron Steel, 2008, 43(5): 35
5 刘石虹, 王新华, 戴观文 等. 高洁净度汽车用非调质钢中非金属夹杂物研究 [J]. 钢铁, 2008, 43(5): 35
6 Lu J L, Wang Y P, Wang Q M, et al. Effect of MnS inclusions distribution on intragranular ferrite formation in medium carbon non-quenched and tempered steel for large-sized crankshaft [J]. ISIJ Int., 2019, 59: 524
doi: 10.2355/isijinternational.ISIJINT-2018-509
7 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
8 Qi Y F, Li J, Shi C B, et al. Precipitation and growth of MnS inclusion in an austenitic hot-work die steel during ESR solidification process [J]. Metall. Res. Technol., 2019, 116: 322
doi: 10.1051/metal/2018114
9 Zhang T S, Min Y, Liu C J, et al. Effect of Mg addition on the evolution of inclusions in Al-Ca deoxidized melts [J]. ISIJ Int., 2015, 55: 1541
doi: 10.2355/isijinternational.ISIJINT-2014-691
10 Lu P Y, Wu H J, Yue F, et al. Effect of calcium treatment on change behavior of inclusions in sulfur-containing non-quenched and tempered steel [J]. Steelmaking, 2015, 31(2): 30
10 陆鹏雁, 吴华杰, 岳 峰 等. 钙处理对含硫非调质钢中夹杂物演变行为的影响 [J]. 炼钢, 2015, 31(2): 30
11 Shen P, Fu J X. Morphology study on inclusion modifications using Mg-Ca treatment in resulfurized special steel [J]. Materials, 2019, 12: 197
doi: 10.3390/ma12020197
12 Yan Z Y, Zhang H, Yang Y Y. Improvement of microstructure and properties of non-quenched and tempered steel for hot forging with calcium treatment [J]. Hot Working Technol., 2016, 45(13):127
12 闫治宇, 张 晗, 杨瑶瑶. Ca处理对含硫热锻微合金非调质钢组织性能改善的研究 [J]. 热加工工艺, 2016, 45(13): 127
13 Liu Q. Study on the corrosion behavior induced by typical inclusions in 304 stainless steel [D]. Beijing: University of Science and Technology Beijing, 2018
13 刘 青. 304不锈钢中典型夹杂物诱发腐蚀行为研究 [D]. 北京: 北京科技大学, 2018
14 Choi J Y, Kim S K, Kang Y B, et al. Compositional evolution of oxide inclusions in austenitic stainless steel during continuous casting [J]. Steel Res. Int., 2015, 86: 284
doi: 10.1002/srin.201300486
15 Ha H Y, Park C J, Kwon H S. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49: 1266
doi: 10.1016/j.corsci.2006.08.017
16 Ånmark N, Karasev A, Jönsson P G. The effect of different non-metallic inclusions on the machinability of steels [J]. Materials, 2015, 8: 751
doi: 10.3390/ma8020751
17 Wranglen G. Pitting and sulphide inclusions in steel [J]. Corros. Sci., 1974, 14: 331
doi: 10.1016/S0010-938X(74)80047-8
18 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon Bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
19 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
20 Gong Y, Yang C, Yao C, et al. Acidic/caustic alternating corrosion on carbon steel pipes in heat exchanger of ethylene plant [J]. Mater. Corros., 2011, 62: 967
21 Shi J J, Sun W, Geng G Q. Corrosion resistances of passive films on low-carbon rebar and fine-grained rebar in alkaline media [J]. Acta Metall. Sin., 2011, 47: 449
21 施锦杰, 孙 伟, 耿国庆. 普通低碳钢与细晶粒钢钝化膜在碱性介质中的耐蚀性 [J]. 金属学报, 2011, 47: 449
22 Fu H, Chen C Y, Li J Q, et al. Effect of sodium thiosulfate on corrosion behavior of Q235 steel in alkaline solution [J]. Hot Working Technol., 2017, 46(8): 87
22 付慧, 陈朝轶, 李军旗 等. 硫代硫酸钠对Q235钢碱性腐蚀行为的影响 [J]. 热加工工艺, 2017, 46(8): 87
23 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation [J]. J. Electrochem. Soc., 2018, 165: C762
doi: 10.1149/2.0251811jes
24 Liu Y, Zong N F. Effects of Al-Mg alloy treatment on behavior and size of inclusions in SUH 409L stainless steel [J]. Metall. Res. Technol., 2018, 115: 111
doi: 10.1051/metal/2017085
25 He B, Li J, Shi C B, et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process [J]. Metall. Res. Technol., 2018, 115: 501
doi: 10.1051/metal/2018071
26 Pang Z X, Zhu R, Chen P D, et al. Formation of MgO-based inclusions during AOD and ladle treatment of Al-killed 2205 duplex stainless steel [J]. Metall. Res. Technol., 2017, 114: 211
doi: 10.1051/metal/2017028
27 Sun H, Wu L P, Xie J B, et al. Inclusions modification and improvement of machinability in a non-quenched and tempered steel with Mg treatment [J]. Metall. Res. Technol., 2020, 117: 208
doi: 10.1051/metal/2020021
28 Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[6] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[7] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[11] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[12] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[13] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[14] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[15] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.