Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1084-1090    DOI: 10.11900/0412.1961.2019.00404
  本期目录 | 过刊浏览 |
CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究
丁文, 王小京(), 刘宁(), 秦亮
江苏科技大学材料科学与工程学院 镇江 212003
Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy
DING Wen, WANG Xiaojing(), LIU Ning(), QIN Liang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

丁文, 王小京, 刘宁, 秦亮. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究[J]. 金属学报, 2020, 56(8): 1084-1090.
Wen DING, Xiaojing WANG, Ning LIU, Liang QIN. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy[J]. Acta Metall Sin, 2020, 56(8): 1084-1090.

全文: PDF(1698 KB)   HTML
摘要: 

将CoCrFeMnNi高熵合金作为中间层,采用真空固态扩散方法实现Cu/304不锈钢的连接,通过SEM、EDS以及显微硬度测试,研究温度对扩散反应机理及性能的影响,采用Fick第二定律计算Cu/Fe原子在高熵合金中的扩散系数,借助XRD以及高熵合金中固溶体相形成判据分析扩散界面的相组成。结果表明:在800~900 ℃下,高熵合金与Cu和304不锈钢分别实现了稳固连接,界面处发生了元素的互扩散,随着温度的升高,Cu/Fe在高熵合金中的平均扩散系数增加;Cu/CoCrFeMnNi高熵合金和CoCrFeMnNi高熵合金/304不锈钢扩散界面处均未形成脆性金属间化合物;扩散界面处硬度呈连续变化趋势。研究表明,CoCrFeMnNi高熵合金是一种可用于Cu/304不锈钢异种材料扩散连接的阻挡层材料。

关键词 高熵合金真空扩散扩散速率反应机理    
Abstract

During the dissimilar materials bonding of copper and 304 stainless steel, micro-voids and micro-cracks can propagate into the bond region because of Kirkendall effect, and have a strong impact on the mechanical and physical properties of conjunct. Copper and 304 stainless steel was bonded by utilizing vacuum solid-state diffusion method with an interlayer of CoCrFeMnNi high-entropy alloy, and the influence of temperature on diffusion reaction mechanism and properties was investigated by using SEM, EDS and microhardness test. The second Fick's law was adopted to calculate the diffusion coefficient of Cu/Fe in CoCrFeMnNi high-entropy alloy. The phase components of the diffusion interface were detected by XRD, and the famous phase-selection-criteria was also used to discuss the phase formation. The results showed that the diffusion interface was well bonded and all the elements diffused mutually at the temperature range of 800~900 ℃, the diffusion rate of Cu/Fe in CoCrFeMnNi high-entropy alloy was increased with the increasing temperature, and no intermetallic compounds were detected at the diffusion interface, and the microhardness increased continuously near the diffusion interface. It was investigated that CoCrFeMnNi high-entropy alloy can be used as an effective diffusion barriers for dissimilar materials bonding of Cu/304 stainless steel.

Key wordshigh-entropy alloy    vacuum diffusion    diffusion rate    reaction mechanism
收稿日期: 2019-11-25     
ZTFLH:  TG457.1  
基金资助:国家自然科学基金项目(51541104);江苏省研究生科研与实践创新计划项目(KYCX19-1674)
作者简介: 丁 文,男,1993年生,硕士生
MaterialMnCrCoNiCSiPSMoCuFe
304SS1.9318.98-9.330.110.650.030.030.320.17Bal.
Electrolytic Cu--------99.95-
HEA19.2319.0720.5021.88------19.32
表1  焊接材料的化学成分 (mass fraction / %)
ElementVECAtomic radius / nmMelting point / ℃
Co90.1251495
Cr60.1281857
Fe80.1261538
Mn70.1351244
Ni100.1241453
Cu110.1281085
HEA--1290~1340
表2  扩散连接材料所含元素的物化性能参数[25]
图1  不同连接温度时Cu/HEA/304SS扩散界面微观形貌及元素分布
图2  850 ℃时Cu/HEA/304SS扩散偶的XRD谱
图3  不同温度下界面附近显微硬度和850 ℃扩散偶的硬度分布图
AtomCrFeMnNiCu
Co-4-1-506
Cr--12-712
Fe--0-213
Mn----84
Ni----4
表3  不同原子之间的混合焓[25] (kJ·mol-1)

Temperature

Diffusion coupleElement composition (atomic fraction / %)
CoCrFeMnNiCu
800Cu/HEA side16.016.716.115.716.519.0
HEA/304SS side17.216.032.316.717.8-
850Cu/HEA side17.517.915.814.720.114.0
HEA/304SS side16.318.230.216.418.9-
900Cu/HEA side19.019.017.611.018.415.0
HEA/304SS side17.716.631.317.417.0-
表4  扩散偶不同区域的元素含量

Temperature

Diffusion couple

ΔHmix

(kJ·mol-1)

δ

%

VEC

ΔSmix

(J·K-1·mol-1)

Phase
800Cu/HEA side2.082.78.5712.26fcc
HEA/304SS side-3.442.98.0413.03fcc
850Cu/HEA side0.482.78.4912.54fcc
HEA/304SS side-3.602.88.0113.13fcc
900Cu/HEA side1.152.58.5212.40fcc
HEA/304SS side-3.452.98.0113.08fcc
表5  扩散偶参数计算结果
[1] Yilmaz O, Aksoy M. Investigation of micro-crack occurrence conditions in diffusion bonded Cu-304 stainless steel couple [J]. J. Mater. Process. Technol., 2002, 121: 136
doi: 10.1016/S0924-0136(01)01224-9
[2] Yilmaz O, Çelik H. Electrical and thermal properties of the interface at diffusion-bonded and soldered 304 stainless steel and copper bimetal [J]. J. Mater. Process. Technol., 2003, 141: 67
doi: 10.1016/S0924-0136(03)00029-3
[3] Gao L, Li Z X, Li G D, et al. Research status and development of copper-steel welding [J]. Weld. Join., 2006, (12): 16
[3] (高 禄, 栗卓新, 李国栋等. 铜-钢异种金属焊接的研究现状和进展 [J]. 焊接, 2006, (12): 16)
[4] Patra S, Arora K S, Shome M, et al. Interface characteristics and performance of magnetic pulse welded copper-steel tubes [J]. J. Mater. Process. Technol., 2017, 245: 278
doi: 10.1016/j.jmatprotec.2017.03.001
[5] Fu J, Huang J, Yao C W, et al. Laser butt welding for copper-steel joint [J]. Chin. J. Lasers, 2009, 36: 1256
doi: 10.3788/JCL
[5] (付 俊, 黄 坚, 姚成武等. 铜钢激光对接焊研究 [J]. 中国激光, 2009, 36: 1256)
[6] Sabetghadam H, Hanzaki A Z, Araee A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer [J]. Mater. Charact., 2010, 61: 626
doi: 10.1016/j.matchar.2010.03.006
[7] Guo Y F, Wang B B, Guo Y Y, et al. Microstructure and mechanical property of two-step vacuum diffusion welded joint of ZK60/5083 using zinc as interlayer [J]. Hot Work. Technol., 2018, 47(17): 55
[7] (郭雨菲, 王宾宾, 郭阳阳等. Zn作中间层的ZK60/5083二次真空扩散焊接头显微组织与力学性能 [J]. 热加工工艺, 2018, 47(17): 55)
[8] Chen Y F, Zhang Z L, Qiu R F. Microstructure and property of diffusion welded titanium alloy/stainless steel joint with Nb and Cu as composite interlayer [J]. Mater. Mech. Eng., 2018, 42(10): 77
[8] (陈一帆, 张占领, 邱然锋. 以铌+铜为复合中间层扩散焊接钛合金/不锈钢接头的组织与性能 [J]. 机械工程材料, 2018, 42(10): 77)
[9] Liu Y L. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2016
[9] (刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究 [D]. 兰州: 兰州理工大学, 2016)
[10] Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
[11] Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multi principal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
[12] Liu N, Ding W, Wang X J, et al. Phases, microstructures and properties of multi-component FeCoNi-based alloys [J]. Mater. Sci. Technol., 2020, 36: 654
doi: 10.1080/02670836.2020.1726017
[13] Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47: 2257
doi: 10.1016/j.corsci.2004.11.008
[14] Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlXCoCrCuFeNi high-entropy alloys as a function of aluminum content [J]. Wear, 2006, 261: 513
doi: 10.1016/j.wear.2005.12.008
[15] Chen C, Liu N, Zhang J, et al. Microstructure stability and oxidation behaviour of (FeCoNiMo)90(Al/Cr)10 high-entropy alloys [J]. Mater. Sci. Technol., 2019, 35: 1883
doi: 10.1080/02670836.2019.1652785
[16] Wu P H, Peng Z, Liu N, et al. The effect of Mn content on the microstructure and properties of CoCrCu0.1Fe0.15Mo1.5MnxNi near equiatomic alloys [J]. Mater. Trans., 2016, 57: 5
doi: 10.2320/matertrans.M2015295
[17] Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multi-component CoCrCux FeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
[18] Yeh J W. Physical metallurgy of high-entropy alloys [J]. JOM, 2015, 67: 2254
doi: 10.1007/s11837-015-1583-5
[19] Cai X Y, Tang Q H, Dai P Q. Microstructure evolution of CoCr-FeMnNi high-entropy alloy during quasi-static tensile [J]. Chin. J. Nonferrous Met., 2018, 28: 135
[19] (蔡小勇, 唐群华, 戴品强. 准静态拉伸过程中CoCrFeMnNi高熵合金显微组织的演变 [J]. 中国有色金属学报, 2018, 28: 135)
[20] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
[21] Kireeva I V, Chumlyakov Y I, Pobedennaya Z V, et al. Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy [J]. Mater. Sci. Eng., 2017, A705: 176
[22] Park N, Lee B J, Tsuji N. The phase stability of equiatomic CoCr-FeMnNi high-entropy alloy: Comparison between experiment and calculation results [J]. J. Alloys Compd., 2017, 719: 189
doi: 10.1016/j.jallcom.2017.05.175
[23] Chen K, Zhai Q Y, Tian J, et al. Resistance welding of TA2 and Q235 base on high entropy interlayer alloys [J]. Mod. Weld., 2013, (8): 36
[23] (陈 凯, 翟秋亚, 田 健等. 基于高熵合金中间层的TA2与Q235电阻焊研究 [J]. 现代焊接, 2013, (8): 36)
[24] Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon [J]. Thin Solid Films, 2008, 516: 5527
doi: 10.1016/j.tsf.2007.07.109
[25] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
[26] Lu J B, Peng Z Q, Ma M X, et al. CoCrCuFeMnNi high-entropy alloy coating prepared by plasma cladding on Q235 steel [J]. Heat Treat. Met., 2016, 41(4): 51
doi: 10.13251/j.issn.0254-6051.2016.04.012
[26] (卢金斌, 彭竹琴, 马明星等. Q235钢等离子熔覆 CoCrCuFeMnNi高熵合金涂层 [J]. 金属热处理, 2016, 41(4): 51)
doi: 10.13251/j.issn.0254-6051.2016.04.012
[27] Luo J, Sheng G M, Yuan X J. Diffusion bonding of SSNC 304L/Cu [J]. J Cent. South Univ. (Sci. Technol.), 2013, 44: 55
[27] (罗 军, 盛光敏, 袁新建. 表面自纳米化304L不锈钢/T2铜扩散连接 [J]. 中南大学学报(自然科学版), 2013, 44: 55)
[28] Zhang Y. Amorphous and High Entropy Alloys [M]. Beijing: Science Press, 2010: 78
[28] (张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010: 78)
[29] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[8] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[9] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[11] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[12] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[13] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[14] 丁俊, 王章洁. 高熵合金中的局域化学有序[J]. 金属学报, 2021, 57(4): 413-424.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.