Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 413-424    DOI: 10.11900/0412.1961.2020.00513
  综述 本期目录 | 过刊浏览 |
高熵合金中的局域化学有序
丁俊(), 王章洁()
西安交通大学 材料科学与工程学院 金属材料强度国家重点实验室 西安 710049
Local Chemical Order in High-Entropy Alloys
DING Jun(), WANG Zhangjie()
State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

丁俊, 王章洁. 高熵合金中的局域化学有序[J]. 金属学报, 2021, 57(4): 413-424.
Jun DING, Zhangjie WANG. Local Chemical Order in High-Entropy Alloys[J]. Acta Metall Sin, 2021, 57(4): 413-424.

全文: PDF(1813 KB)   HTML
摘要: 

高熵合金以其多主组元、高构型熵的设计理念以及优异的性能(例如高强高韧、耐高温和耐辐照等)具有广阔的应用前景,成为近十多年来合金领域内的热点高性能结构材料。从首次发现至今,大多数研究基于经典的理想固溶体假设,然而最新的实验与计算结果显示高熵合金具有局域化学有序,并且会对力学性能产生一定的影响,相关研究在领域内引起了广泛的关注,成为新的研究热点。本文主要综述了高熵合金中局域化学有序的理论描述、实验表征及其对力学性能的影响,并简单展望了在原子尺度上数值化表征并调控局域化学有序,从而实现高熵合金性能优化的可能性和潜在优势。

关键词 高熵合金局域化学有序力学性能    
Abstract

High-entropy alloys are designed based on the concept of multi-principle elements and high-configuration entropy. They exhibit excellent mechanical, high-temperature, and irradiation-tolerant properties, indicating their great potential for high-performance structural materials in the recent decade. Since the discovery of high-entropy alloys, most of the related research work was based on the classical assumption of ideal solid solution. However, recent investigation have showed the local chemical order in high-entropy alloys and how such atomic-level structure tunes the deformation mechanism, which has attracted significant attention. This study reviewed the recent progress in the theoretical description and experimental characterization of the local chemical order as well as its impact on the mechanical properties of high-entropy alloys. Besides, a brief perspective on the research of understanding and optimizing high-entropy alloys from the local chemical order is proposed.

Key wordshigh-entropy alloy    local chemical order    mechanical property
收稿日期: 2020-12-21     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(51971167);国家级青年人才计划
图1  高熵合金、非晶合金与传统合金的局域结构示意图[43]
图2  高熵合金中典型原子尺度结构的示意图
图3  透射电子显微镜电子衍射与暗场像表征高熵合金中局域化学有序[48,58](a) energy-filtered diffraction patterns for aged CrCoNi samples at 1000oC[48](b) energy-filtered dark-field image from diffuse superlattice peaks (short-range order (SRO)-enhanced domains are marked by arrows)[48](c) the histogram of identified SRO domain diameters[48] (dˉ and σ are the average diameter and its standard deviation of domains, respectively)(d) SAED pattern indexed as [1ˉ12]/2 showing the local chemical ordering (LCO)-generated reflections (yellow circle)[58](e) direct visualization of LCO domains by DF-TEM analysis[58](f) size distribution of the LCO domains that appear outside planar slip bands (left) and at planar slip bands (right)[58]
图4  局域化学有序对CrCoNi合金层错能的影响[43,48](a) atomic configuration of stacking fault in CrCoNi alloy[43](b) the distribution of stacking fault energies (γisf) in CrCoNi alloys with a variety of local chemical order (from random solid solution CH_0, to the highest degree, CH_F), measured by DFT (density function theory) calculation[43](c) low angle annular dark field (LAADF) images showing dislocation dissociations in water-quenched and 1000oC aged samples, respectively[48](d) distribution of the measured separation of partial dislocation pairs from both water-quenched and 1000oC aged samples[48]
图5  高熵合金与局域化学有序相关的位错行为[48](a) water-quenched (b) aged at 1000oC
图6  CoCrFeMnNi块体多晶试样变应变速率拉伸测试[77](a) tensile true stress and true strain(b) strain-dependent activation volume of dislocation slip (b—module of Burgers vector)
图7  局域化学有序的强化效应[44](a) correlation between nanoscale segment detrapping events and spatial deviations from chemical disorder (Atoms are colored according to the coarse-grained αCoCr1; darker color means stronger Co-Cr short-range-order (more negative αCoCr1); the dislocation is outlined in blue and its swept area are outlined in green)(b) LCO-induced strengthening (The average activation barriers, activation volume as well as activation stress associated with the nanoscale segment detrapping process; RSS is for random solid solution and Ta represents the temperature for Monte Carlo simulation)
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Laughlin D E, Hono K. Physical Metallurgy [M]. 5th Ed., Singapore: Elsevier, 2014: 305
3 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
4 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
5 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
6 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
7 Pickering E J, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61: 183
8 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
9 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
10 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
11 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
12 Miracle D B. High entropy alloys as a bold step forward in alloy development [J]. Nat. Commun., 2019, 10: 1805
13 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
14 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
15 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
16 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
17 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
18 Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
19 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
20 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
21 Huang H L, Wu Y, He J Y, et al. Phase‐transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
22 Otto F, Dlouhy A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
23 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
24 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
25 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
26 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
27 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
28 Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
29 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
30 Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
31 El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
32 Niu C N, Larosa C R, Miao J S, et al. Magnetically-driven phase transformation strengthening in high entropy alloys [J]. Nat. Commun., 2018, 9: 1363
33 Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
34 Zhang Z J, Mao M M, Wang J W, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi [J]. Nat. Commun., 2015, 6: 10143
35 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
36 Zhao S J, Stocks G M, Zhang Y M, et al. Stacking fault energies of face-centered cubic concentrated solid solution alloys [J]. Acta Mater., 2017, 134: 334
37 Nöhring W G, Curtin W A. Dislocation cross-slip in fcc solid solution alloys [J]. Acta Mater., 2017, 128: 135
38 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
39 Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nat. Commun., 2018, 9: 2381
40 Zhang F, Wu Y, Lou H B, et al. Polymorphism in a high-entropy alloy [J]. Nat. Commun., 2017, 8: 15687
41 Troparevsky M C, Morris J R, Kent P R C, et al. Criteria for predicting the formation of single-phase high-entropy alloys [J]. Phys. Rev., 2015, 5X: 011041
42 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
43 Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 8919
44 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
45 Tamm A, Abloo A, Klintenberg M, et al. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys [J]. Acta Mater., 2015, 99: 307
46 Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
47 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
48 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
49 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
50 Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
51 Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
52 Feng R, Liaw P K, Gao M C, et al. First-principles prediction of high-entropy-alloy stability [J]. npj Comput. Mater., 2017, 3: 50
53 Santodonato L J, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy [J]. Nat. Commun., 2015, 6: 5964
54 Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
55 Yin B L, Yoshida S, Tsuji N, et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order [J]. Nat. Commun., 2020, 11: 2507
56 Niu C, Zaddach A J, Oni A A, et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo [J]. Appl. Phys. Lett., 2015, 106: 161906
57 Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
58 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
59 Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
60 Ma E. Unusual dislocation behavior in high-entropy alloys [J]. Scr. Mater., 2020, 181: 127
61 Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
62 Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
63 Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
64 Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
65 Wu Z K, Tian F Y. Effect of ordering on stacking fault energy of VNiFeCo high entropy alloys [J]. Mater. Today Commun., 2020, 25: 101336
66 Nöhring W G, Curtin W A. Design using randomness: A new dimension for metallurgy [J]. Scr. Mater., 2020, 187: 210
67 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
68 Basu I, De Hosson J T M. Strengthening mechanisms in high entropy alloys: Fundamental issues [J]. Scr. Mater., 2020, 187: 148
69 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
70 Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
71 Sun X, Lu S, Xie R W, et al. Can experiment determine the stacking fault energy of metastable alloys? [J] Mater. Des., 2021, 199: 109396
72 Zhu C, Lu Z P, Nieh T G. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy [J]. Acta Mater., 2013, 61: 2993
73 Zhao Y K, Park J M, Jang J I, et al. Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys [J]. Acta Mater., 2021, 202: 124
74 Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
75 Reinhard L, Moss S C. Recent studies of short-range order in alloys: The Cowley theory revisited [J]. Ultramicroscopy, 1993, 52: 223
76 Zhao Y K, Wang X T, Cao T Q, et al. Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2020, A782: 139281
77 Hong S I, Moon J, Hong S K, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy [J]. Mater. Sci. Eng., 2017, A682: 569
78 Zhou D S, Chen Z H, Ehara K, et al. Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy [J]. Scr. Mater., 2021, 191: 173
79 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
80 Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated metallic glass [J]. Nature, 2020, 578: 559
81 Huang S, Holmström E, Eriksson O, et al. Mapping the magnetic transition temperatures for medium- and high-entropy alloys [J]. Intermetallics, 2018, 95: 80
82 Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.