Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1008-1018    DOI: 10.11900/0412.1961.2018.00469
  本期目录 | 过刊浏览 |
阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究
李玲1,姚生莲1,赵晓丽2,3,杨佳佳1,王野熹1,王鲁宁1,4()
1. 北京科技大学材料科学与工程学院北京材料基因工程高精尖创新中心 北京 100083
2. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
3. 东北大学材料科学与工程学院陶瓷与粉末冶金研究所 沈阳 110819
4. 北京科技大学新金属材料国家重点实验室 北京 100083
Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy
Ling LI1,Shenglian YAO1,Xiaoli ZHAO2,3,Jiajia YANG1,Yexi WANG1,Luning WANG1,4()
1. Beijing Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3. Institute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4. State Key Laboratory of Advanced Metallic Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
Ling LI, Shenglian YAO, Xiaoli ZHAO, Jiajia YANG, Yexi WANG, Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. Acta Metall Sin, 2019, 55(8): 1008-1018.

全文: PDF(18154 KB)   HTML
摘要: 

利用电化学阳极氧化技术,在含有丙三醇、0.35 mol/L NH4F和5%H2O (体积分数)的溶液中,在Zr-17Nb合金表面制备了高度有序的氧化物纳米管阵列。使用XRD、SEM、HRTEM、EDS和XPS对纳米管阵列的结构、形貌和成分进行了详细研究。结果表明,在恒定外加电压70 V的条件下,阳极氧化过程中Zr和Nb的氧化溶解速率保持一致。450 ℃退火处理后,纳米管膜层由无定型态转化为晶态,由正交相ZrO2和正交相锆铌氧化物(Nb2Zr6O17)组成。退火处理后,纳米管膜层弹性模量降低,硬度提高。同时,纳米管阵列表面水接触角减小,呈现更好的亲水性。

关键词 Zr-17Nb合金阳极氧化纳米管阵列物相分析力学性能    
Abstract

Zr-17Nb alloy has been introduced as a candidate for spinal ?xation rods because of its excellent mechanical properties and biocompatibility, low magnetic susceptibility, appropriate initial Young's modulus, remarkable deformation-induced variation of the Young's modulus, good ductility and relatively small springback. It has been recognized that nanotubular surface modification via anodic oxidation on metals is an efficient approach to highly improve biocompatibility of metallic implant. It is thus necessary to understand the formation of nanotubular arrays on Zr-17Nb alloy and carry out the evaluation on the nanotubular arrays. Electrochemical anodization was applied to modify the Zr-17Nb alloy surface to promote the bonding of alloy to human bone. Nanotubular arrays were formed on the surface of Zr-17Nb alloy by applying a 70 V constant potential in a glycerol electrolyte containing 0.35 mol/L NH4F and 5%H2O (volume fraction). XRD, SEM, HRTEM, EDS and XPS were used for the structural, morphological and compositional analyses of the nanotubular arrays. Results showed that during anodic oxidation process, the oxidation and dissolution rate of Zr were almost consistent with those of Nb. By extending the anodization duration from 10 min to 120 min, the diameter of nanotubes increased from about 20 nm to about 67 nm, and the length of nanotubes increased from about 2.4 μm to about 6.8 μm. After annealing at 450 ℃ for 60 min, the nanotube films were converted from amorphous to crystalline, mainly composed of orthogonal phase zirconia (ZrO2) and orthogonal phase zirconium niobium oxide (Nb2Zr6O17). The elastic modulus of the nanotube films decreased and the hardness increased. At the same time, the contact angle was reduced and the hydrophilicity was improved after annealing. Results demonstrate that highly ordered nanotubular arrays could be fabricate on the Zr-17Nb alloy. It is promising that nanotubular surface modification could be an efficient approach for enhancement of the biocompatibility of the alloy.

Key wordsZr-17Nb alloy    anodic oxidation    nanotube array    phase analysis    mechanical property
收稿日期: 2018-10-11     
ZTFLH:  TB383  
基金资助:国家自然科学基金项目(Nos.51501008 and U1560103)
作者简介: 李 玲,女,1994年生,硕士生
图1  阳极氧化制备纳米管过程中电流密度随时间变化关系图和阳极氧化最初2 min内电流密度随时间变化关系图
图2  Zr-17Nb合金表面不同阳极氧化时间制备的纳米管结构表面和截面形貌的SEM像
图3  纳米管管径和纳米管阵列厚度随阳极氧化时间变化关系
图4  阳极氧化120 min制备的纳米管阵列截面形貌和元素分布图
PointMass fraction of ZrMass fraction of NbNb/(Zr+Nb)
%%%
162.212.116.3
259.013.018.1
357.212.317.7
456.612.117.6
555.713.219.2
653.811.818.0
754.111.117.0
表1  图4a中阳极氧化120 min 制备的纳米管截面元素分析结果
图5  Zr-17Nb合金及不同阳极氧化时间制备纳米管阵列前后和阳极氧化120 min制备纳米管阵列450 ℃退火处理前后的XRD谱
图6  阳极氧化120 min制备纳米管的HRTEM分析及元素分布图
PointMass fraction of ZrMass fraction of NbNb/(Zr+Nb)
%%%
159.712.717.5
257.014.219.9
354.714.621.1
表2  图6a中阳极氧化120 min并经过450 ℃退火处理所得纳米管截面元素分析结果
图7  Zr-17Nb合金、阳极氧化120 min及阳极氧化120 min并经过450 ℃退火处理制备的纳米管阵列的XPS
SpecimenYoung's modulusHardness
GPaGPa
Zr-17Nb alloy73.4±9.63.4±0.6
Anodic oxidation 2 h42.5±9.60.5±0.3
Annealing 2 h13.0±8.30.6±0.2
表3  Zr-17Nb合金、阳极氧化120 min及阳极氧化120 min并经过450 ℃退火处理制备的纳米管阵列的力学性能
图8  Zr-17Nb合金、阳极氧化120 min及阳极氧化120 min并经过450 ℃退火处理制备的纳米管阵列的表面接触角
[1] Zaman H A, Sharif S, Idris M H, et al. Metallic biomaterials for medical implant applications: A review [J]. Appl. Mech. Mater., 2015, 735: 19
[2] Wang Q C, Zhang B C, Ren Y B, et al. Research and application of biomedical nickel-free stainless steels [J]. Acta Metall. Sin., 2017, 53: 1311
[2] (王青川, 张炳春, 任伊宾等. 医用无镍不锈钢的研究与应用 [J]. 金属学报, 2017, 53: 1311)
[3] Aherwar A, Singh A K, Patnaik A. Cobalt based alloy: A better choice biomaterial for hip implants [J]. Trends Biomater. Artif. Organs, 2016, 30: 50
[4] Zhang E L, Ge Y, Qin G W. Hot deformation behavior of an antibacterial Co-29Cr-6Mo-1.8Cu alloy and its effect on mechanical property and corrosion resistance [J]. J. Mater. Sci. Technol., 2018, 34: 523
[5] Li Y H, Liang X J, Fan T. Research development of biomedical titanium alloy [J]. Appl. Mech. Mater., 2011, 55-57: 2009
[6] Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788
[7] Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
[7] (于振涛, 余 森, 程 军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238)
[8] Meng Q K, Huo Y F, Ma W, et al. Design and fabrication of a low modulus β-type Ti-Nb-Zr alloy by controlling martensitic transformation [J]. Rare Met., 2018, 37: 789
[9] Ma Z, Ren L, Shahzad M B, et al. Hot deformation behavior of Cu-bearing antibacterial titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1867
[10] Steib J P, Dumas R, Mitton D, et al. Surgical correction of scoliosis by in situ contouring: A detorsion analysis [J]. Spine, 2004, 29: 193
[11] Shafiei F, Honda E, Takahashi H, et al. Artifacts from dental casting alloys in magnetic resonance imaging [J]. J. Dent. Res., 2003, 82: 602
[12] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications [J]. Acta Biomater., 2012, 8: 3888
[13] Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials [J]. Clin. Orthop. Relat. Res., 1992, (274): 124
[14] Zhao X L, Li L, Niinomi M, et al. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young's modulus and low magnetic resonance susceptibility [J]. Acta Biomater., 2017, 62: 372
[15] Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate [J]. Nano Lett., 2007, 7: 1686
[16] Lu Z S, Zhu Z H, Liu J P, et al. ZnO nanorod-templated well-aligned ZrO2 nanotube arrays for fibroblast adhesion and proliferation [J]. Nanotechnology, 2014, 25: 215102
[17] Brammer K S, Oh S, Frandsen C J, et al. TiO2 nanotube structures for enhanced cell and biological functionality [J]. JOM, 2010, 62(4): 50
[18] Yu W Q, Jiang X Q, Zhang F Q, et al. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation [J]. J. Biomed. Mater. Res., 2010, 94A: 1012
[19] Zhao L Z, Liu L, Wu Z F, et al. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation [J]. Biomaterials, 2012, 33: 2629
[20] Wang L N, Jin M, Zheng Y D, et al. Nanotubular surface modification of metallic implants via electrochemical anodization technique [J]. Int. J. Nanomedicine, 2014, 9: 4421
[21] Macak J M, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications [J]. Curr. Opin. Solid State Mater. Sci., 2007, 11: 3
[22] Yin H, Liu H, Shen W Z. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization [J]. Nanotechnology, 2010, 21: 035601
[23] Momeni M M. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes [J]. Rare Met., 2017, 36: 865
[24] Zhao X L, Dai M L, Li S J, et al. Mixture of oxides with different valence states in nanotubes [J]. J. Mater. Sci. Technol., 2016, 32: 142
[25] Song H, Shang J, Suo C. Fabrication of TiO2 nanotube arrays by rectified alternating current anodization [J]. J. Mater. Sci. Technol., 2015, 31: 23
[26] Gong D W, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res., 2001, 16: 3331
[27] Qin L J, Chen Q J, Lan R J, et al. Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays [J]. J. Mater. Sci. Technol., 2015, 31: 1059
[28] Fang D, Yu J G, Luo Z P, et al. Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization [J]. J. Solid State Electrochem., 2012, 16: 1219
[29] Ali G, Yang J P, Kim H J, et al. Formation of self-organized zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization [J]. Nanoscale Res. Lett., 2014, 9: 553
[30] Wang L N, Luo J L. Enhancing the bioactivity of zirconium with the coating of anodized ZrO2 nanotubular arrays prepared in phosphate containing electrolyte [J]. Electrochem. Commun., 2010, 12: 1559
[31] Muratore F, Baron-Wieche? A, Hashimoto T, et al. Anodic zirconia nanotubes: Composition and growth mechanism [J]. Electrochem. Commun., 2010, 12: 1727
[32] Berger S, Faltenbacher J, Bauer S, et al. Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization [J]. Phys. Status Solidi RRL, 2010, 2: 102
[33] Latempa T J, Feng X J, Paulose M, et al. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: Rapid electrochemical synthesis and photoelectrochemical properties [J]. J. Phys. Chem., 2009, 113C: 16293
[34] Sarma B, Jurovitzki A L, Smith Y R, et al. Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT) [J]. J. Power Sources, 2014, 272: 766
[35] Rangaraju R R, Raja K S, Panday A, et al. An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron [J]. Electrochim. Acta, 2010, 55: 785
[36] Galstyan V, Comini E, Faglia G, et al. Synthesis of self-ordered and well-aligned Nb2O5 nanotubes [J]. CrystEngComm, 2014, 16: 10273
[37] Yasuda K, Schmuki P. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes [J]. Electrochim. Acta, 2007, 52: 4053
[38] Tsuchiya H, Schmuki P. Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes [J]. Electrochem. Commun., 2004, 6: 1131
[39] Wang L N, Luo J L. Fabrication and mechanical properties of anodized zirconium dioxide nanotubular arrays [J]. J. Phys., 2011, 44D: 075301
[40] Jin M, Lu X, Qiao Y, et al. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys [J]. Rare Met., 2016, 35: 140
[41] Minagar S, Berndt C C, Gengenbach T, et al. Fabrication and characterization of TiO2-ZrO2-ZrTiO4 nanotubes on TiZr alloy manufactured via anodization [J]. J. Mater. Chem., 2014, 2B: 71
[42] Xu Z C, Li Q, Gao S A, et al. Synthesis and characterization of niobium-doped TiO2 nanotube arrays by anodization of Ti-20Nb alloys [J]. J. Mater. Sci. Technol., 2012, 28: 865
[43] Fornell J, Oliveira N T C, Pellicer E, et al. Anodic formation of self-organized Ti(Nb, Sn) oxide nanotube arrays with tuneable aspect ratio and size distribution [J]. Electrochem. Commun., 2013, 33: 84
[44] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
[45] Tang X H, Li D Y. Fabrication, geometry, and mechanical properties of highly ordered TiO2 nanotubular arrays [J]. J. Phys. Chem., 2009, 113C: 7107
[46] Wu C C, Wei C K, Ho C C, et al. Enhanced hydrophilicity and biocompatibility of dental zirconia ceramics by oxygen plasma treatment [J]. Materials, 2015, 8: 684
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.