Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1008-1018    DOI: 10.11900/0412.1961.2018.00469
  本期目录 | 过刊浏览 |
阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究
李玲1,姚生莲1,赵晓丽2,3,杨佳佳1,王野熹1,王鲁宁1,4()
1. 北京科技大学材料科学与工程学院北京材料基因工程高精尖创新中心 北京 100083
2. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
3. 东北大学材料科学与工程学院陶瓷与粉末冶金研究所 沈阳 110819
4. 北京科技大学新金属材料国家重点实验室 北京 100083
Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy
Ling LI1,Shenglian YAO1,Xiaoli ZHAO2,3,Jiajia YANG1,Yexi WANG1,Luning WANG1,4()
1. Beijing Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3. Institute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4. State Key Laboratory of Advanced Metallic Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(18154 KB)   HTML
摘要: 

利用电化学阳极氧化技术,在含有丙三醇、0.35 mol/L NH4F和5%H2O (体积分数)的溶液中,在Zr-17Nb合金表面制备了高度有序的氧化物纳米管阵列。使用XRD、SEM、HRTEM、EDS和XPS对纳米管阵列的结构、形貌和成分进行了详细研究。结果表明,在恒定外加电压70 V的条件下,阳极氧化过程中Zr和Nb的氧化溶解速率保持一致。450 ℃退火处理后,纳米管膜层由无定型态转化为晶态,由正交相ZrO2和正交相锆铌氧化物(Nb2Zr6O17)组成。退火处理后,纳米管膜层弹性模量降低,硬度提高。同时,纳米管阵列表面水接触角减小,呈现更好的亲水性。

关键词 Zr-17Nb合金阳极氧化纳米管阵列物相分析力学性能    
Abstract

Zr-17Nb alloy has been introduced as a candidate for spinal ?xation rods because of its excellent mechanical properties and biocompatibility, low magnetic susceptibility, appropriate initial Young's modulus, remarkable deformation-induced variation of the Young's modulus, good ductility and relatively small springback. It has been recognized that nanotubular surface modification via anodic oxidation on metals is an efficient approach to highly improve biocompatibility of metallic implant. It is thus necessary to understand the formation of nanotubular arrays on Zr-17Nb alloy and carry out the evaluation on the nanotubular arrays. Electrochemical anodization was applied to modify the Zr-17Nb alloy surface to promote the bonding of alloy to human bone. Nanotubular arrays were formed on the surface of Zr-17Nb alloy by applying a 70 V constant potential in a glycerol electrolyte containing 0.35 mol/L NH4F and 5%H2O (volume fraction). XRD, SEM, HRTEM, EDS and XPS were used for the structural, morphological and compositional analyses of the nanotubular arrays. Results showed that during anodic oxidation process, the oxidation and dissolution rate of Zr were almost consistent with those of Nb. By extending the anodization duration from 10 min to 120 min, the diameter of nanotubes increased from about 20 nm to about 67 nm, and the length of nanotubes increased from about 2.4 μm to about 6.8 μm. After annealing at 450 ℃ for 60 min, the nanotube films were converted from amorphous to crystalline, mainly composed of orthogonal phase zirconia (ZrO2) and orthogonal phase zirconium niobium oxide (Nb2Zr6O17). The elastic modulus of the nanotube films decreased and the hardness increased. At the same time, the contact angle was reduced and the hydrophilicity was improved after annealing. Results demonstrate that highly ordered nanotubular arrays could be fabricate on the Zr-17Nb alloy. It is promising that nanotubular surface modification could be an efficient approach for enhancement of the biocompatibility of the alloy.

Key wordsZr-17Nb alloy    anodic oxidation    nanotube array    phase analysis    mechanical property
收稿日期: 2018-10-11     
ZTFLH:  TB383  
基金资助:国家自然科学基金项目(Nos.51501008 and U1560103)
通讯作者: 王鲁宁     E-mail: luning.wang@ustb.edu.cn
Corresponding author: Luning WANG     E-mail: luning.wang@ustb.edu.cn
作者简介: 李 玲,女,1994年生,硕士生

引用本文:

李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
Ling LI, Shenglian YAO, Xiaoli ZHAO, Jiajia YANG, Yexi WANG, Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy. Acta Metall Sin, 2019, 55(8): 1008-1018.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00469      或      https://www.ams.org.cn/CN/Y2019/V55/I8/1008

图1  阳极氧化制备纳米管过程中电流密度随时间变化关系图和阳极氧化最初2 min内电流密度随时间变化关系图
图2  Zr-17Nb合金表面不同阳极氧化时间制备的纳米管结构表面和截面形貌的SEM像
图3  纳米管管径和纳米管阵列厚度随阳极氧化时间变化关系
图4  阳极氧化120 min制备的纳米管阵列截面形貌和元素分布图
PointMass fraction of ZrMass fraction of NbNb/(Zr+Nb)
%%%
162.212.116.3
259.013.018.1
357.212.317.7
456.612.117.6
555.713.219.2
653.811.818.0
754.111.117.0
表1  图4a中阳极氧化120 min 制备的纳米管截面元素分析结果
图5  Zr-17Nb合金及不同阳极氧化时间制备纳米管阵列前后和阳极氧化120 min制备纳米管阵列450 ℃退火处理前后的XRD谱
图6  阳极氧化120 min制备纳米管的HRTEM分析及元素分布图
PointMass fraction of ZrMass fraction of NbNb/(Zr+Nb)
%%%
159.712.717.5
257.014.219.9
354.714.621.1
表2  图6a中阳极氧化120 min并经过450 ℃退火处理所得纳米管截面元素分析结果
图7  Zr-17Nb合金、阳极氧化120 min及阳极氧化120 min并经过450 ℃退火处理制备的纳米管阵列的XPS
SpecimenYoung's modulusHardness
GPaGPa
Zr-17Nb alloy73.4±9.63.4±0.6
Anodic oxidation 2 h42.5±9.60.5±0.3
Annealing 2 h13.0±8.30.6±0.2
表3  Zr-17Nb合金、阳极氧化120 min及阳极氧化120 min并经过450 ℃退火处理制备的纳米管阵列的力学性能
图8  Zr-17Nb合金、阳极氧化120 min及阳极氧化120 min并经过450 ℃退火处理制备的纳米管阵列的表面接触角
[1] Zaman H A, Sharif S, Idris M H, et al. Metallic biomaterials for medical implant applications: A review [J]. Appl. Mech. Mater., 2015, 735: 19
[2] Wang Q C, Zhang B C, Ren Y B, et al. Research and application of biomedical nickel-free stainless steels [J]. Acta Metall. Sin., 2017, 53: 1311
[2] (王青川, 张炳春, 任伊宾等. 医用无镍不锈钢的研究与应用 [J]. 金属学报, 2017, 53: 1311)
[3] Aherwar A, Singh A K, Patnaik A. Cobalt based alloy: A better choice biomaterial for hip implants [J]. Trends Biomater. Artif. Organs, 2016, 30: 50
[4] Zhang E L, Ge Y, Qin G W. Hot deformation behavior of an antibacterial Co-29Cr-6Mo-1.8Cu alloy and its effect on mechanical property and corrosion resistance [J]. J. Mater. Sci. Technol., 2018, 34: 523
[5] Li Y H, Liang X J, Fan T. Research development of biomedical titanium alloy [J]. Appl. Mech. Mater., 2011, 55-57: 2009
[6] Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788
[7] Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
[7] (于振涛, 余 森, 程 军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238)
[8] Meng Q K, Huo Y F, Ma W, et al. Design and fabrication of a low modulus β-type Ti-Nb-Zr alloy by controlling martensitic transformation [J]. Rare Met., 2018, 37: 789
[9] Ma Z, Ren L, Shahzad M B, et al. Hot deformation behavior of Cu-bearing antibacterial titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1867
[10] Steib J P, Dumas R, Mitton D, et al. Surgical correction of scoliosis by in situ contouring: A detorsion analysis [J]. Spine, 2004, 29: 193
[11] Shafiei F, Honda E, Takahashi H, et al. Artifacts from dental casting alloys in magnetic resonance imaging [J]. J. Dent. Res., 2003, 82: 602
[12] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications [J]. Acta Biomater., 2012, 8: 3888
[13] Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials [J]. Clin. Orthop. Relat. Res., 1992, (274): 124
[14] Zhao X L, Li L, Niinomi M, et al. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young's modulus and low magnetic resonance susceptibility [J]. Acta Biomater., 2017, 62: 372
[15] Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate [J]. Nano Lett., 2007, 7: 1686
[16] Lu Z S, Zhu Z H, Liu J P, et al. ZnO nanorod-templated well-aligned ZrO2 nanotube arrays for fibroblast adhesion and proliferation [J]. Nanotechnology, 2014, 25: 215102
[17] Brammer K S, Oh S, Frandsen C J, et al. TiO2 nanotube structures for enhanced cell and biological functionality [J]. JOM, 2010, 62(4): 50
[18] Yu W Q, Jiang X Q, Zhang F Q, et al. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation [J]. J. Biomed. Mater. Res., 2010, 94A: 1012
[19] Zhao L Z, Liu L, Wu Z F, et al. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation [J]. Biomaterials, 2012, 33: 2629
[20] Wang L N, Jin M, Zheng Y D, et al. Nanotubular surface modification of metallic implants via electrochemical anodization technique [J]. Int. J. Nanomedicine, 2014, 9: 4421
[21] Macak J M, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications [J]. Curr. Opin. Solid State Mater. Sci., 2007, 11: 3
[22] Yin H, Liu H, Shen W Z. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization [J]. Nanotechnology, 2010, 21: 035601
[23] Momeni M M. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes [J]. Rare Met., 2017, 36: 865
[24] Zhao X L, Dai M L, Li S J, et al. Mixture of oxides with different valence states in nanotubes [J]. J. Mater. Sci. Technol., 2016, 32: 142
[25] Song H, Shang J, Suo C. Fabrication of TiO2 nanotube arrays by rectified alternating current anodization [J]. J. Mater. Sci. Technol., 2015, 31: 23
[26] Gong D W, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res., 2001, 16: 3331
[27] Qin L J, Chen Q J, Lan R J, et al. Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays [J]. J. Mater. Sci. Technol., 2015, 31: 1059
[28] Fang D, Yu J G, Luo Z P, et al. Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization [J]. J. Solid State Electrochem., 2012, 16: 1219
[29] Ali G, Yang J P, Kim H J, et al. Formation of self-organized zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization [J]. Nanoscale Res. Lett., 2014, 9: 553
[30] Wang L N, Luo J L. Enhancing the bioactivity of zirconium with the coating of anodized ZrO2 nanotubular arrays prepared in phosphate containing electrolyte [J]. Electrochem. Commun., 2010, 12: 1559
[31] Muratore F, Baron-Wieche? A, Hashimoto T, et al. Anodic zirconia nanotubes: Composition and growth mechanism [J]. Electrochem. Commun., 2010, 12: 1727
[32] Berger S, Faltenbacher J, Bauer S, et al. Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization [J]. Phys. Status Solidi RRL, 2010, 2: 102
[33] Latempa T J, Feng X J, Paulose M, et al. Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: Rapid electrochemical synthesis and photoelectrochemical properties [J]. J. Phys. Chem., 2009, 113C: 16293
[34] Sarma B, Jurovitzki A L, Smith Y R, et al. Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT) [J]. J. Power Sources, 2014, 272: 766
[35] Rangaraju R R, Raja K S, Panday A, et al. An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron [J]. Electrochim. Acta, 2010, 55: 785
[36] Galstyan V, Comini E, Faglia G, et al. Synthesis of self-ordered and well-aligned Nb2O5 nanotubes [J]. CrystEngComm, 2014, 16: 10273
[37] Yasuda K, Schmuki P. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes [J]. Electrochim. Acta, 2007, 52: 4053
[38] Tsuchiya H, Schmuki P. Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes [J]. Electrochem. Commun., 2004, 6: 1131
[39] Wang L N, Luo J L. Fabrication and mechanical properties of anodized zirconium dioxide nanotubular arrays [J]. J. Phys., 2011, 44D: 075301
[40] Jin M, Lu X, Qiao Y, et al. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys [J]. Rare Met., 2016, 35: 140
[41] Minagar S, Berndt C C, Gengenbach T, et al. Fabrication and characterization of TiO2-ZrO2-ZrTiO4 nanotubes on TiZr alloy manufactured via anodization [J]. J. Mater. Chem., 2014, 2B: 71
[42] Xu Z C, Li Q, Gao S A, et al. Synthesis and characterization of niobium-doped TiO2 nanotube arrays by anodization of Ti-20Nb alloys [J]. J. Mater. Sci. Technol., 2012, 28: 865
[43] Fornell J, Oliveira N T C, Pellicer E, et al. Anodic formation of self-organized Ti(Nb, Sn) oxide nanotube arrays with tuneable aspect ratio and size distribution [J]. Electrochem. Commun., 2013, 33: 84
[44] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
[45] Tang X H, Li D Y. Fabrication, geometry, and mechanical properties of highly ordered TiO2 nanotubular arrays [J]. J. Phys. Chem., 2009, 113C: 7107
[46] Wu C C, Wei C K, Ho C C, et al. Enhanced hydrophilicity and biocompatibility of dental zirconia ceramics by oxygen plasma treatment [J]. Materials, 2015, 8: 684
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[13] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.