|
|
GH4169合金圆盘时效过程残余应力的演化规律研究 |
秦海龙,张瑞尧,毕中南( ),杜洪标,张金辉 |
1. 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081 2. 北京钢研高纳科技股份有限公司 北京 100081 3. Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK 4. ISIS Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK |
|
Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk |
Hailong QIN,Ruiyao ZHANG,Zhongnan BI( ),Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG |
1. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2. CISRI-GAONA Co. , Ltd. , Beijing 100081, China 3. Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK 4. ISIS Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK |
引用本文:
秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
Hailong QIN,
Ruiyao ZHANG,
Zhongnan BI,
Lee Tung Lik,
Hongbiao DONG,
Jinhui DU,
Ji ZHANG.
Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. Acta Metall Sin, 2019, 55(8): 997-1007.
[1] | Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2008: 217 | [2] | Zhuang J Y, Du J H, Deng Q, et al. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006: 1 | [2] | (庄景云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 1) | [3] | Lu X D, Du J H, Deng Q. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623 | [4] | Du J H, Lu X D, Deng Q, et al. High-temperature structure stability and mechanical properties of novel 718 superalloy [J]. Mater. Sci. Eng., 2007, A452-453: 584 | [5] | Xie X S, Dong J X, Fu S H, et al. Research and development of γ″ and γ′ strengthened Ni-Fe base superalloy GH4169 [J]. Acta Metall. Sin., 2010, 46: 1289 | [5] | (谢锡善, 董建新, 付书红等. γ″和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展 [J]. 金属学报, 2010, 46: 1289) | [6] | Geng L, Na Y S, Park N K. Continuous cooling transformation behavior of Alloy 718 [J]. Mater. Lett., 1997, 30: 401 | [7] | Dye D, Conlon K T, Reed R C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703 | [8] | Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459 | [9] | Withers P J, Bhadeshia H K D K. Residual stress Part 2—Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366 | [10] | Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925 | [11] | Rolph J, Evans A, Paradowska A, et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. C. R. Phys., 2012, 13: 307 | [12] | Xu P G, Tomota Y. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681 | [12] | (徐平光, 友田阳. 基于原位中子衍射表征技术的进展 [J]. 金属学报, 2006, 42: 681) | [13] | Dong P, Wang H, Li J, et al. Residual stress in welded Beryllium ring by neutron diffraction and finite element modeling [J]. At. Energy Sci. Technol., 2015, 49: 2255 | [13] | (董 平, 王 虹, 李 建等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255) | [14] | Collins D M, D' Souza N, Panwisawas C. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103 | [15] | Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445 | [16] | Wagner J N, Hofmann M, Wimpory R, et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271 | [17] | Eto T, Sato A, Mori T. Stress-oriented precipitation of G. P. Zones and θ' in an Al-Cu alloy [J]. Acta Metall., 1978, 26: 499 | [18] | Li D Y, Chen L Q. Computer simulation of stress-oriented nucleation and growth of θ′ precipitates in Al-Cu alloys [J]. Acta Mater., 1998, 46: 2573 | [19] | Cheng K Y, Jo C Y, Jin T, et al. Influence of applied stress on the γ′ directional coarsening in a single crystal superalloy [J]. Mater. Des., 2010, 31: 968 | [20] | Gao M, Harlow D G, Wei R P, et al. Preferential coarsening of γ″ precipitates in Inconel 718 during creep [J]. Metall. Mater. Trans., 1996, 27A: 3391 | [21] | Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997 | [22] | Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183 | [23] | Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812 | [24] | Pawley G S. Unit-cell refinement from powder diffraction scans [J]. J. Appl. Crystallogr., 1981, 14: 357 | [25] | Denis S, Sj?str?m S, Simon A. Coupled temperature, stress, phase transformation calculation [J]. Metall. Trans., 1987, 18A: 1203 | [26] | Aba-Perea P E, Pirlinga T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys [J]. Mater. Des., 2016, 89: 856 | [27] | Oradei-Basile A, Radavich J F. A current TTT diagram for wrought alloy 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Pittsburgh: Springer, 1991: 325 | [28] | Wang Y Z, Dong J X, Zhang M C, et al. Stress relaxation behavior and mechanism of AEREX 350 and Waspaloy superalloys [J]. Mater. Sci. Eng., 2016, A678: 10 | [29] | Hong S J, Chen W P, Wang T W. A diffraction study of the γ″ phase in INCONEL 718 superalloy [J]. Metall. Mater. Trans., 2001, 32A: 1887 | [30] | Kulawik K, Buffat P A, Kruk A, et al. Imaging and characterization of γ′ and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB—SEM tomography [J]. Mater. Charact., 2015, 100: 74 | [31] | Liu Y, Qin S W, Zuo X W, et al. Finite element simulation and experimental verification of quenching stress in fully through-hardened cylinders [J]. Acta Metall. Sin., 2017, 53: 733 | [31] | (刘 玉, 秦盛伟, 左训伟等. 全淬透圆柱件淬火应力的有限元模拟及实验验证 [J]. 金属学报, 2017, 53: 733) | [32] | Foss B J, Gray S, Hardy M C, et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548 | [33] | Zhang F, Cao W S, Zhang C, et al. Simulation of co-precipitation kinetics of γ′ and γ″ in superalloy 718 [A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [C]. Pittsburgh: Springer, 2018: 147 | [34] | Fisk M, Ion J C, Lindgren L E. Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment [J]. Comput. Mater. Sci., 2104, 82: 531 | [35] | Oblak J M, Paulonis D F, Duvall D S. Coherency strengthening in Ni base alloys hardened by D022γ′ precipitates [J]. Metall. Trans., 1974, 5: 143 | [36] | Han Y F, Chaturvedi M C. A study of back stress during creep deformation of a superalloy inconel 718 [J]. Mater. Sci. Eng., 1987, 85: 59 | [37] | Chaturvedi M C, Han Y F. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7 | [38] | Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|