Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 202-208    DOI: 10.11900/0412.1961.2015.00308
  论文 本期目录 | 过刊浏览 |
退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*
陈思,秦飞,安彤(),王瑞铭,赵静毅
北京工业大学机械工程与应用电子技术学院, 北京 100124
EFFECTS OF ANNEALING PROCESS ON MICRO-STRUCTURE EVOLUTION AND PROTRUSION OFCOPPER FILLED IN THROUGH-SILICON VIAS
Si CHEN,Fei QIN,Tong AN(),Ruiming WANG,Jingyi ZHAO
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
全文: PDF(5128 KB)   HTML
  
摘要: 

采用不同电流密度和外加剂浓度将Cu电镀填充到硅通孔(TSV)制作晶圆试样, 将试样置于Ar气环境内进行退火处理. 观测了硅通孔填充Cu (TSV-Cu)的胀出量和界面完整性, 分析了电镀参数对填充Cu微结构(晶粒尺寸)以及微结构对填充Cu退火胀出量的影响. 结果表明, 电流密度和外加剂浓度影响TSV-Cu的晶粒尺寸. 电流密度越高, 晶粒尺寸越小; 外加剂浓度越高, 晶粒尺寸越小, 但其影响程度不如电流密度显著. 退火后, Cu的晶粒尺寸变大, TSV-Cu发生胀出, 胀出量与Cu晶粒尺寸具有正相关的关系. 随着TSV-Cu的胀出, Cu-Si界面发生开裂, 裂纹沿界面层中的Cu种子层内部延伸.

关键词 硅通孔电镀Cu退火微结构胀出量    
Abstract

3D-IC integration realized by using through-silicon via (TSV) technology is the main trend in packaging industry. TSVs are usually fully filled by electroplated Cu, namely TSV-Cu, which can make products possess higher electrical performance, higher density and lighter weight. In a typical TSV forming process, the TSV-Cu is annealed to stabilize its microstructure. However, during annealing process, the Cu protrudes out of the TSV due to the large change in temperature and the mismatch of coefficient of thermal expansion between the Cu (16.7×10-6-1) and its surrounding Si (2.3×10-6-1) matrix. This protrusion is a potential threat to the TSV structural integrity, since it might lead to cracking or delamination. In this research, the effects of annealing process on microstructure evolution and protrusion of TSV-Cu are investigated. Four level sets of current density and additive concentration were used to fill Cu into the TSV by electroplating process to prepare test specimens. The TSV diameter was 30 μm, and depth was 100 μm. The pitch of two TSVs was 200 μm. The annealing process was conducted in a vacuum annealing furnace, the specimens were heated from 25 ℃ to 425 ℃, and then maintained for 30 min at 425 ℃. The microstructures of TSV-Cu before and after annealing were characterized by EBSD. The protrusion of specimens after annealing was measured by White Light Interferometer (WLI). The results show that, during the electroplating process, both current density and additive concentration have impact on the TSV-Cu grain size, higher current density and higher additive concentration help to gain a finer grained Cu, and the influence of the additive concentration is less significant than the current density. After being annealed, for all the specimens, the Cu grain size increases, the TSV-Cu protrudes with a crack along the Cu-Si interface within the Cu seed layer, and there is a positive correlation between the protrusion and the grain size of the TSV-Cu.

Key wordsthrough-silicon via    electroplated Cu    annealing    microstructure    protrusion
收稿日期: 2015-06-15     
基金资助:* 国家自然科学基金资助项目11272018

引用本文:

陈思,秦飞,安彤,王瑞铭,赵静毅. 退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*[J]. 金属学报, 2016, 52(2): 202-208.
Si CHEN, Fei QIN, Tong AN, Ruiming WANG, Jingyi ZHAO. EFFECTS OF ANNEALING PROCESS ON MICRO-STRUCTURE EVOLUTION AND PROTRUSION OFCOPPER FILLED IN THROUGH-SILICON VIAS. Acta Metall Sin, 2016, 52(2): 202-208.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00308      或      https://www.ams.org.cn/CN/Y2016/V52/I2/202

图1  硅通孔填充铜(TSV-Cu)胀出量的测量
图2  退火前后TSV-Cu试样表面形貌的SEM像
图3  Cu-Si界面结构示意图和升温速率为10 ℃/min的退火前后Cu-Si界面的SEM像
图4  以1.2 ℃/min的升温速率退火后Cu-Si界面的SEM像
图5  4种试样上TSV-Cu退火胀出量
图6  不同电镀参数TSV-Cu退火前后的EBSD图
Specimen Treatment Average grain size / μm Small Middle Large
LL Before annealing 0.696 85.9% 10.2% 3.9%
After annealing 1.058 66.4% 23.5% 10.1%
LH Before annealing 0.608 87.1% 10.5% 2.4%
After annealing 0.984 71.6% 20.0% 8.5%
HL Before annealing 0.438 94.9% 4.3% 0.8%
After annealing 0.970 74.7% 16.0% 9.3%
HH Before annealing 0.374 96.5% 3.3% 0.2%
After annealing 0.766 84.4% 10.7% 4.9%
表1  4种试样上TSV-Cu退火前后的平均晶粒尺寸以及晶粒尺寸分布
图7  4种试样上TSV-Cu退火胀出量及其晶粒尺寸
[1] Lau J H.Microelectron Int, 2011; 28: 8
[2] Ko C T, Chen K N.Microelectron Reliab, 2013; 53: 7
[3] Qin F, Xiang M, Wu W.Acta Metall Sin, 2014; 50: 722
[3] (秦飞, 项敏, 武伟. 金属学报, 2014; 50: 722)
[4] Okoro C, Levine L E, Xu R, Hummler K, Obeng Y S.IEEE Trans Electron Devices, 2014; 61: 2473
[5] Putra W N, Trigg A D, Li H Y, Gan C L.In: Lim Y K ed., 2014 IEEE 21st Int Symp on the Physical and Failure Analysis of Integrated Circuits, New York: Institute of Electrical and Electronics Engineers Inc, 2014: 295
[6] Zhang Y Z, Ding G F, Cheng P, Wang H.ECS Electrochem Lett, 2014; 3: D23
[7] Wu Z Y, Huang Z H, Ma Y C, Xiong H, Conway P P.Electron Mater Lett, 2014; 10: 281
[8] Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F.Microelectron Eng, 2014; 114: 85
[9] De W I, Croes K, Varela P O, Labie R, Redolfi A, Van D P M, Vanstreels K, Okoro C, Vandevelde B, Beyne E.Microelectron Reliab, 2011; 51: 1856
[10] Heryanto A, Putra W N, Trigg A, Gao S, Kwon W S, Che F X, Ang X F, Wei J, Made R I, Gan C L, Pey K L.J Electron Mater, 2012; 41: 2533
[11] Malta D, Gregory C, Lueck M, Temple D, Krause M, Altmann F, Petzold M, Weatherspoon M, Miller J.In: Dias R, Sauter W eds., 2011 IEEE 61st Electronic Components and Technology Conference, New York: Institute of Electrical and Electronics Engineers Inc, 2011: 1815
[12] He H W, Song C S, Xu C, Wang L, Zhang W Q.In: Lim Y K ed., 2013 14th Int Conf on Electronic Packaging Technology, New York: IEEE Computer Society, 2013: 769
[13] Che F X, Putra W N, Heryanto A, Trigg A, Gao S, Gan C L.In: Koyanagi M, Kada M eds., 2011 IEEE Int 3D Systems Integration Conference, New York: IEEE Computer Society, 2011: 6262985
[14] Saettler P, Hecker M, Boettcher M, Rudolph C, Wolter K J.In: Gilles P, Jean M Y, Karlheinz B eds., Proc 5th Electronics System-integration Technology Conference, Piscataway: Institute of Electrical and Electronics Engineers Inc, 2014: 6962712
[15] Saettler P, Boettcher M, Wolter K J.In: McCann D, Pekin S eds., 2012 IEEE 62nd Electronic Components and Technology Conference, New York: Institute of Electrical and Electronics Engineers Inc, 2012: 619
[16] Okoro C, Labie R, Vanstreels K, Franquet A, Gonzalez M, Vandevelde B, Beyne E, Vandepitte D, Verlinden B.J Mater Sci, 2011; 46: 3868
[17] Shin H A S, Kim B J, Kim J H, Hwang S H, Budiman A S, Som H Y, Byun K Y, Tamura N, Kunz M, Kim D I, Joo Y C.J Electron Mater, 2012; 41: 712
[18] Pérez-Prado M T, Vlassak J J.Scr Mater, 2002; 47: 817
[19] Kumar P, Dutta I, Bakir M S.J Electron Mater, 2012; 41: 322
[20] Dutta I, Kumar P, Bakir M S.JOM, 2011; 63: 70
[21] Wu W, Qin F, Li W, Shi G.In: Bi K Y, Tian Z, Xu Z Q eds., 2014 15th Int Conf on Electronic Packaging Technology, Piscataway: Institute of Electrical and Electronics Engineers Inc, 2014: 688
[22] Che F X, Putra W N, Heryanto A, Trigg A, Zhang X W, Gan C L.IEEE Trans Compon Packag Manufact Technol, 2013; 3: 732
[23] Lee H, Wong S S, Lopatin S D.J Appl Phys, 2003; 93: 3796
[24] Lui G T, Chen D, Kuo J C.J Phys, 2009; 42D: 215410
[25] Okoro C, Vanstreels K, Labie R, Lühn O, Vandevelde B, Verlinden B, Vandepitte D.J Micromech Microeng, 2010; 20: 045032
[26] Yan W Z, Zhang J Z, Zhou Z G, Yue Z F.Acta Metall Sin, 2015; 51: 100
[26] (闫五柱, 张嘉振, 周振功, 岳珠峰. 金属学报, 2015; 51: 100)
[27] Hansen N.Scr Mater, 2004; 51: 801
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[3] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[4] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[5] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[6] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[7] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[8] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[9] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[10] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[11] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[12] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[13] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[14] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[15] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.