Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1588-1594    DOI: 10.11900/0412.1961.2021.00020
  研究论文 本期目录 | 过刊浏览 |
退火温度对含Nb高锰钢力学和阻尼性能的影响
王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文()
北京科技大学 冶金与生态工程学院 北京 100083
Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel
WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
Yu WANG, Bin HU, Xingyi LIU, Hao ZHANG, Haoyun ZHANG, Zhiqiang GUAN, Haiwen LUO. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. Acta Metall Sin, 2021, 57(12): 1588-1594.

全文: PDF(2638 KB)   HTML
摘要: 

研究了含Nb高锰阻尼钢热轧后在750~1050℃区间退火后的组织、力学性能和阻尼性能。热轧时发生不均匀动态再结晶,形成轧向带状再结晶组织及带状之间的取向单一、大块状ε马氏体,后者在850℃以下退火不发生再结晶、950℃部分再结晶和1050℃时完全再结晶。未再结晶奥氏体冷却时相变为高密度位错大块状ε马氏体;而再结晶形成众多细小奥氏体晶粒后转变为取向不同的、位错少的细小片层状ε马氏体和残余奥氏体。因此,退火温度增加导致阻尼性能改善但强度下降,而950℃退火的部分再结晶样品则兼具高阻尼性能和高强度,因为再结晶与未再结晶奥氏体相变产物分别贡献了阻尼和力学性能。因此,通过调整Nb合金化和退火工艺来控制高锰钢奥氏体的再结晶程度,可实现力学和阻尼性能的不同程度配合。

关键词 高锰钢退火温度ε马氏体力学性能阻尼性能    
Abstract

In the engineering design of machines and vehicles, the technologies involving vibration and noise reduction receive considerable attention as they can prevent undesirable fatigue failures and offer more comfort to the users. Compared with other damping alloys, high Mn steel has been intensively studied because its high strength and excellent damp capacity can be achieved simultaneously at a low cost. Particularly, it has a strong potential of circumventing the long-existing trade-off of strength and damping capacity for more applications in the new circumstance. In this study, the microstructures and damping and mechanical properties of a novel hot-rolled Nb-alloyed high Mn steel annealed at the temperature range of 750-1050oC were investigated. Heterogeneous recrystallization occurred during hot rolling, resulting in the formation of recrystallized bands along the rolling direction, in which fine lamellar ε martensite grains were interwoven with austenite; the coarse unrecrystallized ε martensite blocks were located between the bands. The latter was reversely transformed to the coarse austenite with a single orientation, remained unrecrystallized, and transformed back to the coarse highly-dislocated ε martensite blocks during the annealing below 850oC. Conversely, the ε martensite blocks reversely transformed the austenite grains partially and completely recrystallized to form even more refined grains with multi-orientations during annealing at 950 and 1050oC, respectively. Thus, the recrystallized austenite grains transformed to fine ε lamellar martensite, and the austenite grains were retained with multi-orientations, both having a low density of dislocation. Consequently, the higher annealing temperature led to higher damping capacity but lower strength; whereas, the partial recrystallization occurring during annealing at 950oC resulted in the best combination of mechanical and damping properties. Therefore, this indicates that tailoring the extent of recrystallization via the Nb-alloying and annealing process for high Mn steel can be an effective method to achieve different combinations of strength and damping capacity.

Key wordshigh Mn steel    annealing temperature    ε martensite    mechanical property    damping capacity
收稿日期: 2021-01-14     
ZTFLH:  TG135.7  
基金资助:国家自然科学基金项目(51831002);中央高校基本科研业务费专项基金项目(FRF-TP-18-002C2)
作者简介: 王 玉,男,1995年生,硕士
图1  热轧高锰钢板的微观组织与成分表征(a) secondary electronic image(b) Mn concentrations measured along the yellow line in Fig.1a by EPMA (c, d) EBSD inverse pole figures (IPFs) (c) and phase mapping (d) on the same area (e, f) phase mapping (e) and image quality/boundary mapping (f) magnified from the black square in Fig.1d
图2  热轧高锰钢在750~1050℃退火后组织的EBSD表征结果(a-d) image quality (IQ) phase mapping (e-h) IPFs (i-l) grain reference orientation deviation (GROD) mapping
图3  热轧高锰钢相分数随退火温度的变化,及加热和冷却过程中热膨胀量变化与相变温度确定
图4  含Nb高锰钢不同温度退火后的阻尼性能和力学性能(a) the relationship of logarithmic decrement (δ) and strain at the vibration of 1 Hz(b) engineering stress-strain curves of the specimens hot rolled and annealed at 750-1050oC(c) the relationship between logarithmic decrement of 0.1% strain amplitude and ultimate tensile strength
图5  热轧板与1050℃退火高锰钢板在加热和冷却时其振动衰减对数系数(δ)随温度的变化
1 Jee K K, Jang W Y, Baik S H, et al. Damping mechanism and application of Fe-Mn based alloys [J]. Mater. Sci. Eng., 1999, A273-275: 538
2 Huang S K, Wen Y H, Li N, et al. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy [J]. Mater. Charact., 2008, 59: 681
3 Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe-17Mn (mass%) alloys [J]. ISIJ Int., 2008, 48: 99
4 Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
5 Jun J H, Choi C S. The influence of Mn content on microstructure and damping capacity in Fe-(17∼23)%Mn alloys [J]. Mater. Sci. Eng., 1998, A252: 133
6 Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
7 Huang S K, Li N, Wen Y H, et al. Temperature dependence of the damping capacity in Fe-19.35Mn alloy [J]. J. Alloys Compd., 2008, 455: 225
8 Wang S H, Li J, Chai F, et al. Influence of solution temperature on γε transformation and damping capacity of Fe-19Mn Alloy [J]. Acta Metall. Sin., 2020, 56: 1217
8 王世宏, 李 健, 柴 锋等. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响 [J]. 金属学报, 2020, 56: 1217
9 Wang H J, Wang H, Zhang R Q, et al. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy [J]. J. Alloys Compd., 2019, 770: 252
10 Huang S K, Li N, Wen Y H, et al. Effects of deep-cooling and temperature on damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2007, 43: 807
10 黄姝珂, 李 宁, 文玉华等. 深冷处理和温度对Fe-Mn合金阻尼性能的影响 [J]. 金属学报, 2007, 43: 807
11 Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy [J]. Mater. Sci. Eng., 2008, A479: 223
12 Shin S, Kwon M, Cho W, et al. The effect of grain size on the damping capacity of Fe-17 wt%Mn [J]. Mater. Sci. Eng., 2017, A683: 187
13 Wang H, Wang F, Liu H T, et al. Influence of alloy elements (Mo, Nb, Ti) on the strength and damping capacity of Fe-Cr based alloy [J]. Mater. Sci. Eng., 2016, A667: 326
14 Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations [J]. Scr. Mater., 2003, 48: 147
15 Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
16 Cho S H, Kang K B, Jonas J J. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel [J]. Mater. Sci. Technol., 2002, 18: 389
17 Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn Alloy [J]. Mater. Trans. JIM, 1993, 34: 489
18 Bracke L, Verbeken K, Kestens L, et al. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel [J]. Acta Mater., 2009, 57: 1512
19 Zhao P C, Chen B, Zheng Z G, et al. Microstructure and texture evolution in a post-dynamic recrystallized titanium during annealing, monotonic and cyclic loading [J]. Metall. Mater. Trans., 2020, 52A: 394
20 Sevsek S, Brasche F, Molodov D A, et al. On the influence of grain size on the TWIP/TRIP-effect and texture development in high-manganese steels [J]. Mater. Sci. Eng., 2019, A754: 152
21 Ma Y L, Ge T S. Dislocation damping peaks appearing within the temperature range for the direct and inverse martensitic transformations of an iron-manganese alloy [J]. Acta Phys. Sin., 1964, 20: 909
21 马应良, 葛庭燧. 铁锰合金在正、反马氏体型相变温度范围内出现的位错内耗峰 [J]. 物理学报, 1964, 20: 909
22 Yang X S, Sun S, Ruan H H, et al. Shear and shuffling accomplishing polymorphic fcc γ→hcp ε→bct α martensitic phase transformation [J]. Acta Mater., 2017, 136: 347
23 Yang D P, Wu D, Yi H L. Reverse transformation from martensite into austenite in a medium-Mn steel [J]. Scr. Mater., 2019, 161: 1
24 Filho I R S, da Silva A K, Sandim M J R, et al. Martensite to austenite reversion in a high-Mn steel: Partitioning-dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation [J]. Acta Mater., 2019, 166: 178
25 Li X, Wei L L, Chen L Q, et al. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures [J]. Mater. Charact., 2018, 144: 575
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.