Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 333-339    DOI: 10.11900/0412.1961.2019.00274
  研究论文 本期目录 | 过刊浏览 |
CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能
曹育菡1,王理林2,吴庆峰2,何峰2(),张忠明1,王志军2
1. 西安理工大学材料科学与工程学院 西安 710048
2. 西北工业大学凝固技术国家重点实验室 西安 710072
Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy
CAO Yuhan1,WANG Lilin2,WU Qingfeng2,HE Feng2(),ZHANG Zhongming1,WANG Zhijun2
1. Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi‘an 710072, China
引用本文:

曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
Yuhan CAO, Lilin WANG, Qingfeng WU, Feng HE, Zhongming ZHANG, Zhijun WANG. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. Acta Metall Sin, 2020, 56(3): 333-339.

全文: PDF(16723 KB)   HTML
摘要: 

通过深冷轧制再结晶处理,在CoCrFeNiMo0.2高熵合金中实现了典型的不完全再结晶组织,并研究了其对力学性能的影响。对比研究了室温和深冷轧制及热处理后的不完全再结晶组织。结果表明,CoCrFeNiMo0.2高熵合金室温轧制35% (RTR35%)和深冷轧制35% (CTR35%)试样经800 ℃、30 min退火处理,均产生了由未再结晶的大晶粒和再结晶细小晶粒组成的不完全再结晶组织。深冷轧制能提高合金的再结晶速率,退火后产生的再结晶细小晶粒体积分数更高,更有利于提高合金的加工硬化能力。因此,CTR35%退火试样的屈服强度为539.3 MPa,延伸率为46.8%,与RTR35%退火试样相比,其屈服强度相似,但延伸率提高了30%。

关键词 高熵合金轧制变形退火处理不完全再结晶组织力学性能    
Abstract

In recent years, high-entropy alloys have triggered broad research interests due to their unique and intriguing mechanical properties. In general, the increase in strength is accompanied by the reduction in ductility. Therefore, strong and ductile metallic materials have always been pursued by metallurgist. Heterogeneous structure has been reported to be very useful for overcoming the strength-ductility trade-off in metallic materials. In this work, typical partially recrystallized structure has been obtained in CoCrFeNiMo0.2 high-entropy alloy by cryogenic rolling and annealing. The effect of partially recrystallized structure on the mechanical properties has been studied. After 35% cold rolling (RTR35%) and 35% cryogenic rolling (CTR35%) and annealed at 800 ℃ for 30 min, CoCrFeNiMo0.2 high-entropy alloys developed partially recrystallization microstructures featured by coarse deformed grains and fine recrystallized grains. The yield strength of the CTR35% sample is 539.3 MPa and its elongation is 46.8%, which is similar in strength but 30% higher in elongation when compared with the RTR35% sample. This can be understood from the fact that samples rolled at cryogenic temperature showed a higher volume fraction of fine recrystallized grains, resulting in better strain hardening capability.

Key wordshigh-entropy alloy    rolling deformation    annealing treatment    partially recrystallized structure    mechanical property
收稿日期: 2019-08-16     
ZTFLH:  TG335.12  
基金资助:国家重点研发计划项目(2018YFC0310400)
作者简介: 曹育菡,女,1995年生,硕士生
图1  CoCrFeNiMo0.2高熵合金的初始试样、RTR35%和CTR35%试样及其不同热处理试样的硬度
图2  CoCrFeNiMo0.2高熵合金初始试样的XRD谱和显微组织的OM像
图3  CoCrFeNiMo0.2高熵合金RTR35%和CTR35%试样及其经800 ℃、30 min退火处理后显微组织的OM像
图4  CoCrFeNiMo0.2高熵合金RTR35%和CTR35%试样经800 ℃、30 min退火处理后的EBSD像
图5  CoCrFeNiMo0.2高熵合金的初始试样、RTR35%和CTR35%试样及其经800 ℃、30 min退火处理试样的拉伸应力-应变曲线与加工硬化速率曲线
Sampleσy / MPaσb / MPaδ / %
Initial condition248.2623.184.7
RTR35%886.6976.412.8
CTR35%937.41018.310.7
RTR35%+800 ℃, 30 min545.9813.536.1
CTR35%+800 ℃, 30 min539.3829.946.8
表1  CoCrFeNiMo0.2合金的初始试样、RTR35%和CTR35%试样及其经800 ℃、30 min退火处理试样的屈服强度(σy)、抗拉强度(σb)以及伸长率(δ)
图6  CoCrFeNiMo0.2高熵合金RTR35%和CTR35%试样经800 ℃、30 min退火处理后显微组织的SEM像
[1] Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[3] Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
[4] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
[5] Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
[6] Zyka J, Málek J, Pala Z, et al. Structure and mechanical properties of TaNbHfZrTi high entropy alloy [A]. Metal 2015 [C]. Brno, Czech Republic, EU, 2015: 1687
[7] Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
[8] Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
[9] Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
[10] Wei S L, Kim J, Tasan C C. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys [J]. Acta Mater., 2019, 168: 76
[11] Wei D X, Li X Q, Jiang J, et al. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys [J]. Scr. Mater., 2019, 165: 39
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
[13] Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
[13] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
[14] Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
[15] Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
[16] Shun T T, Chang L Y, Shiu M H. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy [J]. Mater. Character., 2013, 81: 92
[17] He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
[18] Wu W Q, Guo L, Liu B, et al. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy [J]. Philos. Mag., 2017, 97: 3229
[19] Li Z M, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69: 2099
[20] Ming K S, Bi X F, Wang J. Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures [J]. Int. J. Plast., 2019, 113: 255
[21] Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
[22] Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure [J]. Acta Mater., 2019, 165: 444
[23] Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
[24] Liu J L, Umemoto M, Todaka Y, et al. Formation of a nanocrystalline surface layer on steels by air blast shot peening [J]. J. Mater. Sci., 2007, 42: 7716
[25] Balusamy T, Narayanan T S N S, Ravichandran K, et al. Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel [J]. Surf. Coat. Technol., 2013, 232: 60
[26] Li J S, Cao Y, Gao B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure [J]. J. Mater. Sci., 2018, 53: 10442
[27] Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
[28] Bae J W, Moon J, Jang M J, et al. Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy [J]. Mater. Sci. Eng., 2017, A703: 324
[29] Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy [J]. Intermetallics, 2015, 59: 8
[30] He F, Wang Z J, Wu Q F, et al. Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy [J]. Scr. Mater., 2018, 155: 134
[31] Dan Sathiaraj G, Bhattacharjee P P, Tsai C W, et al. Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2016, 69: 1
[32] Bhattacharjee T, Wani I S, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing [J]. Sci. Rep., 2018, 8: 3276
[33] Wang J, Guo T, Li J S, et al. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 192
[34] Courtney T H. Mechanical Behavior of Materials [M]. 2nd Ed, Long Grove, IL: Waveland Press, 2005: 186
[35] Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
[36] Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.