Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 333-339    DOI: 10.11900/0412.1961.2019.00274
  研究论文 本期目录 | 过刊浏览 |
CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能
曹育菡1,王理林2,吴庆峰2,何峰2(),张忠明1,王志军2
1. 西安理工大学材料科学与工程学院 西安 710048
2. 西北工业大学凝固技术国家重点实验室 西安 710072
Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy
CAO Yuhan1,WANG Lilin2,WU Qingfeng2,HE Feng2(),ZHANG Zhongming1,WANG Zhijun2
1. Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi‘an 710072, China
全文: PDF(16723 KB)   HTML
摘要: 

通过深冷轧制再结晶处理,在CoCrFeNiMo0.2高熵合金中实现了典型的不完全再结晶组织,并研究了其对力学性能的影响。对比研究了室温和深冷轧制及热处理后的不完全再结晶组织。结果表明,CoCrFeNiMo0.2高熵合金室温轧制35% (RTR35%)和深冷轧制35% (CTR35%)试样经800 ℃、30 min退火处理,均产生了由未再结晶的大晶粒和再结晶细小晶粒组成的不完全再结晶组织。深冷轧制能提高合金的再结晶速率,退火后产生的再结晶细小晶粒体积分数更高,更有利于提高合金的加工硬化能力。因此,CTR35%退火试样的屈服强度为539.3 MPa,延伸率为46.8%,与RTR35%退火试样相比,其屈服强度相似,但延伸率提高了30%。

关键词 高熵合金轧制变形退火处理不完全再结晶组织力学性能    
Abstract

In recent years, high-entropy alloys have triggered broad research interests due to their unique and intriguing mechanical properties. In general, the increase in strength is accompanied by the reduction in ductility. Therefore, strong and ductile metallic materials have always been pursued by metallurgist. Heterogeneous structure has been reported to be very useful for overcoming the strength-ductility trade-off in metallic materials. In this work, typical partially recrystallized structure has been obtained in CoCrFeNiMo0.2 high-entropy alloy by cryogenic rolling and annealing. The effect of partially recrystallized structure on the mechanical properties has been studied. After 35% cold rolling (RTR35%) and 35% cryogenic rolling (CTR35%) and annealed at 800 ℃ for 30 min, CoCrFeNiMo0.2 high-entropy alloys developed partially recrystallization microstructures featured by coarse deformed grains and fine recrystallized grains. The yield strength of the CTR35% sample is 539.3 MPa and its elongation is 46.8%, which is similar in strength but 30% higher in elongation when compared with the RTR35% sample. This can be understood from the fact that samples rolled at cryogenic temperature showed a higher volume fraction of fine recrystallized grains, resulting in better strain hardening capability.

Key wordshigh-entropy alloy    rolling deformation    annealing treatment    partially recrystallized structure    mechanical property
收稿日期: 2019-08-16     
ZTFLH:  TG335.12  
基金资助:国家重点研发计划项目(2018YFC0310400)
通讯作者: 何峰     E-mail: fenghe@mail.nwpu.edu.cn
Corresponding author: Feng HE     E-mail: fenghe@mail.nwpu.edu.cn
作者简介: 曹育菡,女,1995年生,硕士生

引用本文:

曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
Yuhan CAO, Lilin WANG, Qingfeng WU, Feng HE, Zhongming ZHANG, Zhijun WANG. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy. Acta Metall Sin, 2020, 56(3): 333-339.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00274      或      https://www.ams.org.cn/CN/Y2020/V56/I3/333

图1  CoCrFeNiMo0.2高熵合金的初始试样、RTR35%和CTR35%试样及其不同热处理试样的硬度
图2  CoCrFeNiMo0.2高熵合金初始试样的XRD谱和显微组织的OM像
图3  CoCrFeNiMo0.2高熵合金RTR35%和CTR35%试样及其经800 ℃、30 min退火处理后显微组织的OM像
图4  CoCrFeNiMo0.2高熵合金RTR35%和CTR35%试样经800 ℃、30 min退火处理后的EBSD像
图5  CoCrFeNiMo0.2高熵合金的初始试样、RTR35%和CTR35%试样及其经800 ℃、30 min退火处理试样的拉伸应力-应变曲线与加工硬化速率曲线
Sampleσy / MPaσb / MPaδ / %
Initial condition248.2623.184.7
RTR35%886.6976.412.8
CTR35%937.41018.310.7
RTR35%+800 ℃, 30 min545.9813.536.1
CTR35%+800 ℃, 30 min539.3829.946.8
表1  CoCrFeNiMo0.2合金的初始试样、RTR35%和CTR35%试样及其经800 ℃、30 min退火处理试样的屈服强度(σy)、抗拉强度(σb)以及伸长率(δ)
图6  CoCrFeNiMo0.2高熵合金RTR35%和CTR35%试样经800 ℃、30 min退火处理后显微组织的SEM像
[1] Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[3] Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
[4] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
[5] Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
[6] Zyka J, Málek J, Pala Z, et al. Structure and mechanical properties of TaNbHfZrTi high entropy alloy [A]. Metal 2015 [C]. Brno, Czech Republic, EU, 2015: 1687
[7] Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
[8] Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
[9] Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
[10] Wei S L, Kim J, Tasan C C. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys [J]. Acta Mater., 2019, 168: 76
[11] Wei D X, Li X Q, Jiang J, et al. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys [J]. Scr. Mater., 2019, 165: 39
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
[13] Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
[13] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
[14] Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
[15] Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
[16] Shun T T, Chang L Y, Shiu M H. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy [J]. Mater. Character., 2013, 81: 92
[17] He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
[18] Wu W Q, Guo L, Liu B, et al. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy [J]. Philos. Mag., 2017, 97: 3229
[19] Li Z M, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69: 2099
[20] Ming K S, Bi X F, Wang J. Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures [J]. Int. J. Plast., 2019, 113: 255
[21] Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
[22] Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure [J]. Acta Mater., 2019, 165: 444
[23] Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
[24] Liu J L, Umemoto M, Todaka Y, et al. Formation of a nanocrystalline surface layer on steels by air blast shot peening [J]. J. Mater. Sci., 2007, 42: 7716
[25] Balusamy T, Narayanan T S N S, Ravichandran K, et al. Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel [J]. Surf. Coat. Technol., 2013, 232: 60
[26] Li J S, Cao Y, Gao B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure [J]. J. Mater. Sci., 2018, 53: 10442
[27] Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
[28] Bae J W, Moon J, Jang M J, et al. Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy [J]. Mater. Sci. Eng., 2017, A703: 324
[29] Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy [J]. Intermetallics, 2015, 59: 8
[30] He F, Wang Z J, Wu Q F, et al. Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy [J]. Scr. Mater., 2018, 155: 134
[31] Dan Sathiaraj G, Bhattacharjee P P, Tsai C W, et al. Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2016, 69: 1
[32] Bhattacharjee T, Wani I S, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing [J]. Sci. Rep., 2018, 8: 3276
[33] Wang J, Guo T, Li J S, et al. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 192
[34] Courtney T H. Mechanical Behavior of Materials [M]. 2nd Ed, Long Grove, IL: Waveland Press, 2005: 186
[35] Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
[36] Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[13] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[15] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.