|
|
超高速激光熔覆镍基WC涂层的显微结构与耐磨性能 |
张煜1, 娄丽艳1,2, 徐庆龙1, 李岩1, 李长久1, 李成新1( ) |
1 西安交通大学金属材料强度国家重点实验室 西安 710049 2 天津职业技术师范大学机械工程学院 天津 300222 |
|
Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding |
ZHANG Yu1, LOU Liyan1,2, XU Qinglong1, LI Yan1, LI Changjiu1, LI Chengxin1( ) |
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 2 School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
引用本文:
张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
Yu ZHANG,
Liyan LOU,
Qinglong XU,
Yan LI,
Changjiu LI,
Chengxin LI.
Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. Acta Metall Sin, 2020, 56(11): 1530-1540.
[1] |
Liu Q, Lin N M, Zou J J, et al. Recent developments in improving tribological behaviors of iron and steel via surface texturing [J]. Surf. Technol., 2016, 45(5): 41
|
[1] |
(刘 强, 林乃明, 邹娇娟等. 改善钢铁材料摩擦学行为的表面织构研究现状 [J]. 表面技术, 2016, 45(5): 41)
|
[2] |
Zhang Q. Manual on Wear of Metals and Wear Resistance of Metallic Materials [M]. Beijing: Metallurgical Industry Press, 1991: 22
|
[2] |
(张 清. 金属磨损和金属耐磨材料手册 [M]. 北京: 冶金工业出版社, 1991: 22)
|
[3] |
Zhao M H, Liu A G, Guo M H. Research on WC reinforced metal matrix composite [J]. Weld. Joining, 2006, (11): 26
|
[3] |
(赵敏海, 刘爱国, 郭面焕. WC颗粒增强耐磨材料的研究现状 [J]. 焊接, 2006, (11): 26)
|
[4] |
Wu P, Zhou C Z, Tang X N. Wear characteristics of Ni-base alloy and Ni/WC coatings by laser cladding [J]. Acta Metall. Sin., 2002, 38: 1257
|
[4] |
(吴 萍, 周昌炽, 唐西南. 激光熔覆镍基合金和Ni/WC涂层的磨损特性 [J]. 金属学报, 2002, 38: 1257)
|
[5] |
Wang K M, Lei Y P, Fu H G, et al. Effect of power on microstructure and hardness of laser cladding Ni-based WC coating [J]. Rare Met. Mater. Eng., 2017, 46: 3474
|
[5] |
(王开明, 雷永平, 符寒光等. 功率对激光熔覆Ni基WC涂层组织与硬度的影响 [J]. 稀有金属材料与工程, 2017, 46: 3474)
|
[6] |
Rong L, Huang J, Li Z G, et al. Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles [J]. China Surf. Eng., 2010, 23(6): 40
|
[6] |
(戎 磊, 黄 坚, 李铸国等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能 [J]. 中国表面工程, 2010, 23(6): 40)
|
[7] |
Si S H, Yuan X M, Xu K, et al. Effect of laser power on microstructures and wear properties of WCP/Ni metal ceramics coating [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 183
|
[7] |
(斯松华, 袁晓敏, 徐 锟等. 激光功率对激光熔覆WCP/Ni基金属陶瓷涂层的组织与磨损性能的影响 [J]. 中国腐蚀与防护学报, 2004, 24: 183)
|
[8] |
Stewart D A, Shipway P H, McCartney D G. Influence of heat treatment on the abrasive wear behaviour of HVOF sprayed WC-Co coatings [J]. Surf. Coat. Technol., 1998, 105: 13
|
[9] |
Shu D, Li Z G, Zhang K, et al. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding [J]. Mater. Lett., 2017, 195: 178
|
[10] |
Liu F R, Gao Q, Gao P D, et al. Cracking analysis of WC reinforced composites coating by laser cladding [J]. J. Mater. Eng., 2003, (5): 37
|
[10] |
(刘富荣, 高 谦, 高登攀等. 激光熔覆WC增强复合涂层开裂行为分析 [J]. 材料工程, 2003, (5): 37)
|
[11] |
Ma Q S, Li Y J, Wang J, et al. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding [J]. J. Alloys Compd., 2015, 645: 151
|
[12] |
Leunda J, Sanz C, Soriano C. Laser cladding strategies for producing WC reinforced NiCr coatings inside twin barrels [J]. Surf. Coat. Technol., 2016, 307: 720
|
[13] |
Schopphoven T, Gasser A, Backes G. EHLA: Extreme high-speed laser material deposition [J]. Laser Tech. J., 2017, 14: 45
|
[14] |
Kelbassa I, Gasser A, Meiners W, et al. High speed LAM [A]. International Photonics and Optoelectronics Meetings [C]. Washington: OSA Technical Digest, 2012: 3386
|
[15] |
Li L Q, Shen F M, Zhou Y D, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding [J]. J. Laser Appl., 2019, 31: 042009
|
[16] |
Cui G, Han B, Cui N, et al. Effects of scanning speed on microstructure and properties of laser cladding Ni-based WC alloy coating [J]. China Surf. Eng., 2014, 27(4): 82
|
[16] |
(崔 岗, 韩 彬, 崔 娜等. 扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响 [J]. 中国表面工程, 2014, 27(4): 82)
|
[17] |
Song L J, Zeng G C, Xiao H, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders [J]. J. Manuf. Processes, 2016, 24: 116
|
[18] |
Schopphoven T, Gasser A, Wissenbach K, et al. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying [J]. J. Laser Appl., 2016, 28: 022501
|
[19] |
Li L Q, Shen F M, Zhou Y D, et al. Comparison of microstructure and corrosion resistance of 431 stainless steel coatings prepared by extreme high-speed laser cladding and conventional laser cladding [J]. Chin. J. Laser., 2019, 46: 1002010
|
[19] |
(李俐群, 申发明, 周远东等. 超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性的对比 [J]. 中国激光, 2019, 46: 1002010)
|
[20] |
Tantai F L, Tian H F, Chen F, et al. Discussion on application of high-speed laser cladding on 27SiMn hydraulic support column [J]. New Technol. New Process, 2019, (3): 52
|
[20] |
(澹台凡亮, 田洪芳, 陈 峰等. 高速激光熔覆在27SiMn液压支架立柱上的应用探讨 [J]. 新技术新工艺, 2019, (3): 52)
|
[21] |
Jing Z J, Zhou H, Zhang P, et al. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC [J]. Appl. Surf. Sci., 2013, 271: 329
|
[22] |
Paul C P, Alemohammad H, Toyserkani E, et al. Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser [J]. Mater. Sci. Eng., 2007, A464: 170
|
[23] |
Lee C, Park H, Yoo J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+NiCr [J]. Appl. Surf. Sci., 2015, 345: 286
|
[24] |
Kadolkar P B, Watkins T R, de Hosson J T M, et al. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys [J]. Acta Mater., 2007, 55: 1203
|
[25] |
Jendrzejewski R, Śliwiński G, Krawczuk M, et al. Temperature and stress fields induced during laser cladding [J]. Comput. Struct., 2004, 82: 653
|
[26] |
Zhou S F, Zeng X Y, Hu Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization [J]. Appl. Surf. Sci., 2008, 255: 1646
|
[27] |
Zhou S F, Huang Y J, Zeng X Y. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot [J]. Appl. Surf. Sci., 2008, 254: 3110
|
[28] |
LU Y S, Guo C S, Ma T S, et al. Technical Manual of Mechanical Manufacturing Process Materials [M]. Beijing: China Machine Press, 1993: 477
|
[28] |
(陆燕荪, 郭春生, 马铁山等. 机械制造工艺材料技术手册-下册 [M]. 北京: 机械工业出版社, 1993: 477)
|
[29] |
Bowie O L. Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole [J]. J. Math. Phys., 1956, 35: 60
|
[30] |
Alam M M, Kaplan A F H, Tuominen J, et al. Analysis of the stress raising action of flaws in laser clad deposits [J]. Mater. Des., 2013, 46: 328
|
[31] |
Shen F M, Tao W, Li L Q, et al. Effect of microstructure on the corrosion resistance of coatings by extreme high speed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146085
|
[32] |
Chen H H, Xu C Y, Chen J, et al. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear [J]. Wear, 2008, 264: 487
|
[33] |
Suh N P. An overview of the delamination theory of wear [J]. Wear, 1977, 44: 1
|
[34] |
Suh N P. New theories of wear and their implications for tool materials [J]. Wear, 1980, 62: 1
|
[35] |
Dong X, Jahanmir S, Ives L K. Wear transition diagram for silicon carbide [J]. Tribol. Int., 1995, 28: 559
|
[36] |
Sun N, Shan H Y, Zhou H, et al. Friction and wear behaviors of compacted graphite iron with different biomimetic units fabricated by laser cladding [J]. Appl. Surf. Sci., 2012, 258: 7699
|
[37] |
Wu C F, Ma M X, Liu W J, et al. Study on wear resistance of laser cladding Fe-based composite coatings reinforced by in-situ multiple carbide particles [J]. Acta Metall. Sin., 2009, 45: 1013
|
[37] |
(吴朝锋, 马明星, 刘文今等. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究 [J]. 金属学报, 2009, 45: 1013)
|
[38] |
Wan M Q, Shi J, Lei L, et al. A comparative study of the microstructure, mechanical properties and corrosion resistance of Ni- or Fe- based composite coatings by laser cladding [J]. J. Mater. Eng. Perform., 2018, 27: 2844
|
[39] |
Zhu S M, Zhang Y D. The microstructure and wear-resistant properties of laser cladding Ni-Based WC alloy on Q345 steel surface [J]. Appl. Mech. Mater., 2014, 556-562: 189
|
[40] |
Wu X W, Zeng X Y, Zhu B D, et al. Heat damage of laser clad Ni-based WC coating [J]. Acta Metall. Sin., 1997, 33: 1282
|
[40] |
(吴新伟, 曾晓雁, 朱蓓蒂等. 镍基WC金属陶瓷激光熔覆涂层的熔化烧损规律 [J]. 金属学报, 1997, 33: 1282)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|