Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1530-1540    DOI: 10.11900/0412.1961.2020.00033
  本期目录 | 过刊浏览 |
超高速激光熔覆镍基WC涂层的显微结构与耐磨性能
张煜1, 娄丽艳1,2, 徐庆龙1, 李岩1, 李长久1, 李成新1()
1 西安交通大学金属材料强度国家重点实验室 西安 710049
2 天津职业技术师范大学机械工程学院 天津 300222
Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding
ZHANG Yu1, LOU Liyan1,2, XU Qinglong1, LI Yan1, LI Changjiu1, LI Chengxin1()
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2 School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
引用本文:

张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
Yu ZHANG, Liyan LOU, Qinglong XU, Yan LI, Changjiu LI, Chengxin LI. Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. Acta Metall Sin, 2020, 56(11): 1530-1540.

全文: PDF(2847 KB)   HTML
摘要: 

采用超高速激光熔覆技术制备了镍基WC涂层,通过SEM、EDS和XRD等对比研究了超高速与低速激光熔覆镍基WC涂层的表面形貌、组织结构与耐磨性能。结果表明,相较于低速激光熔覆,超高速激光熔覆热输入更小、冷却速率更高,制备的镍基WC涂层拥有更好的表面质量;同时,有效减小了基体元素对涂层的稀释,显著降低了WC颗粒的热损伤,使得涂层中碳化物的析出与孔隙生成得到抑制,WC陶瓷颗粒均匀分布,进而显著降低涂层残余应力,避免涂层中裂纹的产生;超高速激光熔覆镍基WC涂层耐磨性能更为优良,磨损机制为磨粒磨损。

关键词 超高速激光熔覆镍基WC涂层显微结构耐磨性能    
Abstract

Steel materials are highly sourced construction materials owing to their robust mechanical properties, and they are widely used in the construction industry for building bridges, tunnels, skyscrapers, towers, ship-metal parts, and other industrial metal applications. However, as steel has poor surface wear resistance, parts are susceptible to failure due to friction damage. To improve the surface wear resistance of steel materials, Ni-based WC coating was prepared by ultra-high-speed laser cladding. Using low-speed laser cladding as a reference, the surface morphology, microstructure, and wear resistance of ultra-high-speed laser cladding of Ni-based WC coatings were studied using SEM, EDS, and XRD, respectively. Experimental results revealed that the Ni-based WC coating prepared by ultra-high-speed laser cladding exhibited better surface quality compared with that prepared by low-speed laser cladding. Comparatively, ultra-high-speed laser cladding requires a smaller heat input and a faster cooling rate. However, the dilution rate of the coating is significantly reduced. In addition, ultra-high-speed laser cladding significantly reduces thermal damage in the WC coating; it inhibits the precipitation of carbides and formation of porosities and promotes the uniform distribution of the WC in the coating, thereby significantly reducing stress localization in the coating and also inhibits crack nucleation in the coating. Because of the reduction of porosities, cracks, and other surface defects in the coating and uniform distribution of WC particles, the Ni-based WC coating prepared by ultra-high-speed laser cladding possesses better wear resistance than that prepared by low-speed laser cladding, and the wear mechanism is abrasion.

Key wordsultra-high speed laser cladding    Ni-based WC coating    microstructure    wear resistance
收稿日期: 2020-01-21     
ZTFLH:  TG456.7  
基金资助:国家重点研发计划项目(2018YFB2002000);天津市自然科学基金项目(19JCQNJC03800)
作者简介: 张 煜,男,1994年生,硕士生

No.

Power

kW

Linear

velocity

m·min-1

Powder feeding

rate r·min-1

Carrier

gas

L·min-1

11.513.62.55
21.51.22.55
表1  超高速及低速激光熔覆实验参数
图1  Hegenas LC-WC-60粉末形貌的BSE像
PowderCNiSiWSrCu
WC17.21-3.3272.936.54-
Ni-Cu alloy-63.55---36.45
表2  Hegenas LC-WC-60合金粉末成分 (mass fraction / %)
图2  No.1与No.2镍基WC涂层的表面形貌与粗糙度
图3  No.1与No.2镍基WC涂层断面BSE像与过渡区元素EDS分析
No.CSiFeNiCuSrW
13.571.331.5136.5811.902.6342.49
25.240.4928.3122.917.830.3734.84
表3  No.1与No.2镍基WC涂层EDS面扫描成分分析 (mass fraction / % )
图4  No.1与No.2镍基WC涂层显微组织的SE和BSE像
PointCSiFeNiCuW
Dendrite (A)22.510.99-49.2727.23-
Eutectic (B)17.062.27-63.1517.51-
Dendrite (C)17.131.35-49.2123.888.43
Eutectic (D)---65.3234.68-
White carbide (E)22.47----77.53
Bar-like carbide (F)5.81-10.326.370.8176.68
Flocculent carbide (G)21.93-8.934.45-64.70
表4  图4中不同点EDS成分分析 (mass fraction / %)
图5  No.1与No.2镍基WC涂层的XRD谱
图6  未包括WC颗粒的No.1与No.2镍基WC涂层显微硬度分布
图7  No.1、No.2镍基WC涂层与45钢基体的摩擦系数和磨损失重
Material

Density

g·cm-3

Melting point

K

Thermal expansion coefficient / (10-6 K-1)

Thermal conductivity

W·m-1·K-1

WC15.730495.2~7.3121
Ni-Cu alloy8.841573~162314.025.96
45 steel7.85176311.251.9
表5  45钢基体与熔覆材料的物理性能参数[28]
图8  No.2镍基WC涂层中裂纹的BSE像
图9  No.1、No.2镍基WC涂层与45钢基体的表面磨损SE像
[1] Liu Q, Lin N M, Zou J J, et al. Recent developments in improving tribological behaviors of iron and steel via surface texturing [J]. Surf. Technol., 2016, 45(5): 41
[1] (刘 强, 林乃明, 邹娇娟等. 改善钢铁材料摩擦学行为的表面织构研究现状 [J]. 表面技术, 2016, 45(5): 41)
[2] Zhang Q. Manual on Wear of Metals and Wear Resistance of Metallic Materials [M]. Beijing: Metallurgical Industry Press, 1991: 22
[2] (张 清. 金属磨损和金属耐磨材料手册 [M]. 北京: 冶金工业出版社, 1991: 22)
[3] Zhao M H, Liu A G, Guo M H. Research on WC reinforced metal matrix composite [J]. Weld. Joining, 2006, (11): 26
[3] (赵敏海, 刘爱国, 郭面焕. WC颗粒增强耐磨材料的研究现状 [J]. 焊接, 2006, (11): 26)
[4] Wu P, Zhou C Z, Tang X N. Wear characteristics of Ni-base alloy and Ni/WC coatings by laser cladding [J]. Acta Metall. Sin., 2002, 38: 1257
[4] (吴 萍, 周昌炽, 唐西南. 激光熔覆镍基合金和Ni/WC涂层的磨损特性 [J]. 金属学报, 2002, 38: 1257)
[5] Wang K M, Lei Y P, Fu H G, et al. Effect of power on microstructure and hardness of laser cladding Ni-based WC coating [J]. Rare Met. Mater. Eng., 2017, 46: 3474
[5] (王开明, 雷永平, 符寒光等. 功率对激光熔覆Ni基WC涂层组织与硬度的影响 [J]. 稀有金属材料与工程, 2017, 46: 3474)
[6] Rong L, Huang J, Li Z G, et al. Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles [J]. China Surf. Eng., 2010, 23(6): 40
[6] (戎 磊, 黄 坚, 李铸国等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能 [J]. 中国表面工程, 2010, 23(6): 40)
[7] Si S H, Yuan X M, Xu K, et al. Effect of laser power on microstructures and wear properties of WCP/Ni metal ceramics coating [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 183
[7] (斯松华, 袁晓敏, 徐 锟等. 激光功率对激光熔覆WCP/Ni基金属陶瓷涂层的组织与磨损性能的影响 [J]. 中国腐蚀与防护学报, 2004, 24: 183)
[8] Stewart D A, Shipway P H, McCartney D G. Influence of heat treatment on the abrasive wear behaviour of HVOF sprayed WC-Co coatings [J]. Surf. Coat. Technol., 1998, 105: 13
[9] Shu D, Li Z G, Zhang K, et al. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding [J]. Mater. Lett., 2017, 195: 178
[10] Liu F R, Gao Q, Gao P D, et al. Cracking analysis of WC reinforced composites coating by laser cladding [J]. J. Mater. Eng., 2003, (5): 37
[10] (刘富荣, 高 谦, 高登攀等. 激光熔覆WC增强复合涂层开裂行为分析 [J]. 材料工程, 2003, (5): 37)
[11] Ma Q S, Li Y J, Wang J, et al. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding [J]. J. Alloys Compd., 2015, 645: 151
[12] Leunda J, Sanz C, Soriano C. Laser cladding strategies for producing WC reinforced NiCr coatings inside twin barrels [J]. Surf. Coat. Technol., 2016, 307: 720
[13] Schopphoven T, Gasser A, Backes G. EHLA: Extreme high-speed laser material deposition [J]. Laser Tech. J., 2017, 14: 45
[14] Kelbassa I, Gasser A, Meiners W, et al. High speed LAM [A]. International Photonics and Optoelectronics Meetings [C]. Washington: OSA Technical Digest, 2012: 3386
[15] Li L Q, Shen F M, Zhou Y D, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding [J]. J. Laser Appl., 2019, 31: 042009
[16] Cui G, Han B, Cui N, et al. Effects of scanning speed on microstructure and properties of laser cladding Ni-based WC alloy coating [J]. China Surf. Eng., 2014, 27(4): 82
[16] (崔 岗, 韩 彬, 崔 娜等. 扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响 [J]. 中国表面工程, 2014, 27(4): 82)
[17] Song L J, Zeng G C, Xiao H, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders [J]. J. Manuf. Processes, 2016, 24: 116
[18] Schopphoven T, Gasser A, Wissenbach K, et al. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying [J]. J. Laser Appl., 2016, 28: 022501
[19] Li L Q, Shen F M, Zhou Y D, et al. Comparison of microstructure and corrosion resistance of 431 stainless steel coatings prepared by extreme high-speed laser cladding and conventional laser cladding [J]. Chin. J. Laser., 2019, 46: 1002010
[19] (李俐群, 申发明, 周远东等. 超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性的对比 [J]. 中国激光, 2019, 46: 1002010)
[20] Tantai F L, Tian H F, Chen F, et al. Discussion on application of high-speed laser cladding on 27SiMn hydraulic support column [J]. New Technol. New Process, 2019, (3): 52
[20] (澹台凡亮, 田洪芳, 陈 峰等. 高速激光熔覆在27SiMn液压支架立柱上的应用探讨 [J]. 新技术新工艺, 2019, (3): 52)
[21] Jing Z J, Zhou H, Zhang P, et al. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC [J]. Appl. Surf. Sci., 2013, 271: 329
[22] Paul C P, Alemohammad H, Toyserkani E, et al. Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser [J]. Mater. Sci. Eng., 2007, A464: 170
[23] Lee C, Park H, Yoo J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+NiCr [J]. Appl. Surf. Sci., 2015, 345: 286
[24] Kadolkar P B, Watkins T R, de Hosson J T M, et al. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys [J]. Acta Mater., 2007, 55: 1203
[25] Jendrzejewski R, Śliwiński G, Krawczuk M, et al. Temperature and stress fields induced during laser cladding [J]. Comput. Struct., 2004, 82: 653
[26] Zhou S F, Zeng X Y, Hu Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization [J]. Appl. Surf. Sci., 2008, 255: 1646
[27] Zhou S F, Huang Y J, Zeng X Y. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot [J]. Appl. Surf. Sci., 2008, 254: 3110
[28] LU Y S, Guo C S, Ma T S, et al. Technical Manual of Mechanical Manufacturing Process Materials [M]. Beijing: China Machine Press, 1993: 477
[28] (陆燕荪, 郭春生, 马铁山等. 机械制造工艺材料技术手册-下册 [M]. 北京: 机械工业出版社, 1993: 477)
[29] Bowie O L. Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole [J]. J. Math. Phys., 1956, 35: 60
[30] Alam M M, Kaplan A F H, Tuominen J, et al. Analysis of the stress raising action of flaws in laser clad deposits [J]. Mater. Des., 2013, 46: 328
[31] Shen F M, Tao W, Li L Q, et al. Effect of microstructure on the corrosion resistance of coatings by extreme high speed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146085
[32] Chen H H, Xu C Y, Chen J, et al. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear [J]. Wear, 2008, 264: 487
[33] Suh N P. An overview of the delamination theory of wear [J]. Wear, 1977, 44: 1
[34] Suh N P. New theories of wear and their implications for tool materials [J]. Wear, 1980, 62: 1
[35] Dong X, Jahanmir S, Ives L K. Wear transition diagram for silicon carbide [J]. Tribol. Int., 1995, 28: 559
[36] Sun N, Shan H Y, Zhou H, et al. Friction and wear behaviors of compacted graphite iron with different biomimetic units fabricated by laser cladding [J]. Appl. Surf. Sci., 2012, 258: 7699
[37] Wu C F, Ma M X, Liu W J, et al. Study on wear resistance of laser cladding Fe-based composite coatings reinforced by in-situ multiple carbide particles [J]. Acta Metall. Sin., 2009, 45: 1013
[37] (吴朝锋, 马明星, 刘文今等. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究 [J]. 金属学报, 2009, 45: 1013)
[38] Wan M Q, Shi J, Lei L, et al. A comparative study of the microstructure, mechanical properties and corrosion resistance of Ni- or Fe- based composite coatings by laser cladding [J]. J. Mater. Eng. Perform., 2018, 27: 2844
[39] Zhu S M, Zhang Y D. The microstructure and wear-resistant properties of laser cladding Ni-Based WC alloy on Q345 steel surface [J]. Appl. Mech. Mater., 2014, 556-562: 189
[40] Wu X W, Zeng X Y, Zhu B D, et al. Heat damage of laser clad Ni-based WC coating [J]. Acta Metall. Sin., 1997, 33: 1282
[40] (吴新伟, 曾晓雁, 朱蓓蒂等. 镍基WC金属陶瓷激光熔覆涂层的熔化烧损规律 [J]. 金属学报, 1997, 33: 1282)
[1] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[4] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[5] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[6] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[7] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[8] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[9] 李祥亮,陈江华,刘春辉,冯佳妮,王时豪. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响[J]. 金属学报, 2013, 49(2): 243-250.
[10] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[11] 成宇浩 张跃飞 毛圣成 韩晓东 张泽. 温度对电沉积纳米孪晶Ni显微结构及纳米压痕力学性能的影响[J]. 金属学报, 2012, 48(11): 1342-1348.
[12] 梁海宁 宋晓艳 张哲旭 卢年端 刘雪梅 张久兴. 具有永磁性能的SmCo2纳米晶合金化合物的制备与表征[J]. 金属学报, 2010, 46(8): 973-978.
[13] 姜涛; 薛向欣; 段培宁; 杜刚 . TiN/O'--Sialon导电复合材料的制备及其性能[J]. 金属学报, 2007, 43(2): 131-136 .
[14] 才庆魁; 贺春林; 赵明久; 毕敬; 刘常升 . 亚微米级SiC颗粒增强铝基复合材料的拉伸性能与强化机制[J]. 金属学报, 2003, 39(8): 865-869 .
[15] 华文深; 吴杏芳; 陆华; 沈电洪 . TiCx/Ni3Al复合材料相界面显微结构及界面纳米硬度与弹性模量分布[J]. 金属学报, 2002, 38(10): 1109-1114 .