Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 801-820    DOI: 10.11900/0412.1961.2019.00451
  本期目录 | 过刊浏览 |
二元互不固溶金属合金化的研究进展
黄远(), 杜金龙, 王祖敏
天津大学材料科学与工程学院 天津 300354
Progress in Research on the Alloying of Binary Immiscible Metals
HUANG Yuan(), DU Jinlong, WANG Zumin
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
全文: PDF(3903 KB)   HTML
摘要: 

基于二元互不固溶金属体系的材料在航天、核聚变工程、电子封装以及反装甲武器等领域中有着广泛的应用,但由于反应热为正、组元性质差异较大,其直接合金化以及相应的材料制备都十分困难。针对于此,国内外开发了多种用于二元互不固溶金属直接合金化的方法,并对合金化过程的热力学和扩散机制进行了研究。本文首先综述了机械合金化、物理气相沉积和离子束混合3种已有合金化方法的原理、热力学机制及其在二元互不固溶金属粉末合金和纳米多层膜等材料中的应用。然后,介绍了近些年来本研究组提出并发展的辐照损伤诱发合金化、高温结构诱发合金化等新型互不固溶金属合金化方法,详细阐述了这2种方法的原理、合金化界面显微结构、热力学机制、扩散机制和应用。最后,展望了二元互不固溶金属体系合金化研究的发展趋势。

关键词 二元互不固溶金属体系直接合金化热力学机制显微结构力学性能    
Abstract

Materials based on binary immiscible metal systems are widely used in aerospace, nuclear fusion engineering, electronic packaging, anti-armor weapons and other fields. However, due to the positive formation heat and the large differences in the properties of the component, the direct alloying of binary immiscible metals and the preparation of the corresponding materials are very difficult. Varieties of methods have been developed for direct alloying of binary immiscible metals at home and abroad, and the thermodynamic and diffusion mechanism of these methods have been studied. In this review, firstly the principle and thermodynamic mechanism of mechanical alloying, physical vapor deposition and ion beam mixing, as well as their applications in binary immiscible metal powder alloys and nano-multilayer films are reviewed. Then the irradiation damage alloying (IDA) and high-temperature structure induced alloying (HTSIA) methods that are proposed and developed by our group are introduced. Besides, the principle, interfacial microstructure, thermodynamic mechanism, diffusion mechanism and application of these two methods were described in detail. Finally, the development trend of the research on alloying of binary immiscible metals is proposed.

Key wordsbinary immiscible metallic alloy    direct alloying    thermodynamic mechanism    microstructure    mechanical property
收稿日期: 2019-12-17     
ZTFLH:  TG131  
基金资助:国家重点研发计划项目(2018YFB0703904);国家重点研发计划项目(2017YFE0302600);国家自然科学基金项目(51471114);国家自然科学基金项目(51171128)
通讯作者: 黄远     E-mail: yi_huangyuan@tju.edu.cn
Corresponding author: HUANG Yuan     E-mail: yi_huangyuan@tju.edu.cn
作者简介: 黄 远,男,1970年生,教授,博士

引用本文:

黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
Yuan HUANG, Jinlong DU, Zumin WANG. Progress in Research on the Alloying of Binary Immiscible Metals. Acta Metall Sin, 2020, 56(6): 801-820.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00451      或      https://www.ams.org.cn/CN/Y2020/V56/I6/801

图1  大塑性变形的工艺示意图:高压扭转、等通道转角挤压、累积叠轧
图2  物理气沉积示意图
图3  离子束混合示意图
图4  辐照损伤诱发互不固溶金属合金化并制备W/Ag、Mo/Ag和Mo/Cu层状复合材料的工艺流程[100]
图5  W/Ag层状复合材料截面的EDX线扫描结果[100]
图7  Mo/Cu层状复合材料截面的EDX线扫描结果[100,102]
图8  W/Ag层状复合材料的界面结构[100]
图9  Mo/Ag层状复合材料的界面结构[100,101]
图10  Mo/Cu 层状复合材料的界面结构[100]
图11  预退火的纯Mo和经过Ag离子注入的Mo的S参数比较、Mo/Ag层状金属基复合材料在不同温度退火的S参数和S/SB参数[101] (S为Doppler展宽谱的线性参数,SB为被归一化为无缺陷样品的S值)
Annealing temperature / ℃S parameter value of S peakDepth / nm
3000.4635155
4000.4657119
5000.4622119
6000.4604108
7000.450178
表1  Mo/Ag双层金属在不同温度下合金化相同时间后的VEPAS测试S参数峰值和峰值相应深度[101]
图6  Mo/Ag层状复合材料截面的EDX线扫描结果[100,101]
图12  Mo/Ag层状复合材料截面的TEM像[101]
图13  Mo/Ag层状试样中的Kirkendall孔洞形成过程[101]
图14  高温结构诱发合金化(HTSIA)制备Nb/Cu棒状复合材料的工艺流程[107]
图15  W/Cu连接件界面显微结构的HRTEM观察结果[109]
图16  球磨30和40 h后在980 ℃烧结3 h制备的W50Cu50粉末的HRTEM像和相应的SAED花样[109]
图17  原始轧制态和退火后的W棒和Cu棒的DSC曲线[109]
图18  W50Cu50球磨粉末烧结前后的DSC曲线[109]
图19  W-Cu体系高温结构诱发合金化过程中的Gibbs自由能变化曲线[109]
[1] Ma E. Alloys created between immiscible elements [J]. Prog. Mater. Sci., 2005, 50: 413
doi: 10.1016/j.pmatsci.2004.07.001
[2] Lu G H, Zhou H B, Becquart C S. A review of modelling and simulation of hydrogen behaviour in tungsten at different scales [J]. Nucl. Fusion, 2014, 54: 086001
doi: 10.1088/0029-5515/54/8/086001
[3] Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2011, 415: S2
[4] Chen W G, Dong L L, Zhang H, et al. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique [J]. Mater. Lett., 2017, 205: 198
doi: 10.1016/j.matlet.2017.06.090
[5] Wang F T, Wu Y C, Wang T G, et al. Fabrication and properties of the W-Cu gradient heat sink materials for plasma facing materials [J]. Acta Mater. Comp. Sin., 2008, 25(2): 25
[5] 汪峰涛, 吴玉程, 王涂根等. W-Cu面对等离子体梯度热沉材料的制备和性能 [J]. 复合材料学报, 2008, 25(2): 25
[6] Shikov A, Pantsyrnyi V, Vorobieva A, et al. High strength, high conductivity Cu-Nb based conductors with nanoscaled microstructure [J]. Physica, 2001, 354C: 410
[7] Yano S, Matsui H, Morozumi S. Structural observations of the interface of explosion-bonded Mo/Cu system [J]. J. Mater. Sci., 1998, 33: 4857
doi: 10.1023/A:1004438515248
[8] Yoshida N. Review of recent works in development and evaluation of high-Z plasma facing materials [J]. J. Nucl. Mater., 1999, 266-269: 197
doi: 10.1016/S0022-3115(98)00817-4
[9] Taghavi Pourian Azar G, Rezaie H R, Gohari B, et al. Synthesis and densification of W-Cu, W-Cu-Ag and W-Ag composite powders via a chemical precipitation method [J]. J. Alloys Compd., 2013, 574: 432
doi: 10.1016/j.jallcom.2013.04.172
[10] Huang Y, Kong D Y, He F, et al. Preparation of Mo/Ag laminar composites by using irradiation damage alloying method [J]. Acta Metall. Sin., 2012, 48: 1253
doi: 10.3724/SP.J.1037.2011.00811
[10] 黄 远, 孔德月, 何 芳等. 辐照损伤合金化制备Mo/Ag层状复合材料 [J]. 金属学报, 2012, 48: 1253
doi: 10.3724/SP.J.1037.2011.00811
[11] Findik F, Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials [J]. Mater. Des., 2003, 24: 489
doi: 10.1016/S0261-3069(03)00125-0
[12] Wu F, Bellon P, Melmed A J, et al. Forced mixing and nanoscale decomposition in ball-milled Cu-Ag characterized by APFIM [J]. Acta Mater., 2001, 49: 453
doi: 10.1016/S1359-6454(00)00329-3
[13] Xi S Q, Zuo K S, Li X G, et al. Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr(Mo) [J]. Acta Mater., 2008, 56: 6050
doi: 10.1016/j.actamat.2008.08.013
[14] Al-Aqeeli N, Hussein M A, Suryanarayana C. Phase evolution during high energy ball milling of immiscible Nb-Zr alloys [J]. Adv. Powder Technol., 2015, 26: 385
doi: 10.1016/j.apt.2014.11.008
[15] Martínez C, Ordoñez S, Serafini D, et al. Study of the formation and thermal stability of Mg2Co obtained by mechanical alloying and heat treatment [J]. J. Alloys Compd., 2014, 590: 469
doi: 10.1016/j.jallcom.2013.12.123
[16] Musu E, Mura G, Ligios G, et al. Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi [J]. J. Alloys Compd., 2013, 576: 80
doi: 10.1016/j.jallcom.2013.04.124
[17] Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
[18] Selvakumar N, Vettivel S C. Thermal, electrical and wear behavior of sintered Cu-W nanocomposite [J]. Mater. Des., 2013, 46: 16
doi: 10.1016/j.matdes.2012.09.055
[19] Darling K A, Roberts A J, Mishin Y, et al. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum [J]. J. Alloys Compd., 2013, 573: 142
doi: 10.1016/j.jallcom.2013.03.177
[20] Rajagopalan M, Darling K, Turnage S, et al. Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study [J]. Mater. Des., 2017, 113: 178
doi: 10.1016/j.matdes.2016.10.020
[21] Ren F Z, Zhu W W, Chu K J, et al. Tribological and corrosion behaviors of bulk Cu-W nanocomposites fabricated by mechanical alloying and warm pressing [J]. J. Alloys Compd., 2016, 676: 164
doi: 10.1016/j.jallcom.2016.03.141
[22] López J M, Alonso J A, Gallego L J. Determination of the glass-forming concentration range in binary alloys from a semiempirical theory: Application to Zr-based alloys [J]. Phys. Rev., 1987, 36B: 3716
[23] Zuo K S, Xi S Q, Zhou J E. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1206
doi: 10.1016/S1003-6326(08)60430-6
[24] Ran G, Zhou J E, Xi S Q, et al. Study on phase transformation and thermodynamic and kinetic of Al-Pb powder during mechanical alloying [J]. Heat Treat. Met., 2004, 29(7): 49
[24] 冉 广, 周敬恩, 席生岐等. 机械合金化过程中Al-Pb相变的热力学和动力学研究 [J]. 金属热处理, 2004, 29(7): 49
[25] Sheibani S, Heshmati-Manesh S, Ataie A. Structural investigation on nano-crystalline Cu-Cr supersaturated solid solution prepared by mechanical alloying [J]. J. Alloys Compd., 2010, 495: 59
doi: 10.1016/j.jallcom.2010.02.034
[26] Wu Z F, Zhou F, Cheng Z. Mechanical alloying of Ag-Cu nanocrystalline supersaturated solid solution [J]. Powder Metall. Ind., 2015, 25(5): 13
[26] 吴志方, 周 帆, 程 钊. 机械合金化制备Ag-Cu纳米晶过饱和固溶体 [J]. 粉末冶金工业, 2015, 25(5): 13
[27] Wu Z F, Zhou F. Mechanical alloying of Co-Cu nano-crystalline supersaturated solid solution [J]. China Powder Sci. Technol., 2015, 21(2): 64
[27] 吴志方, 周 帆. 机械合金化制备Co-Cu纳米晶过饱和固溶体 [J]. 中国粉体技术, 2015, 21(2): 64
[28] Ma E, Sheng H W, He J H, et al. Solid-state alloying in nanostructured binary systems with positive heat of mixing [J]. Mater. Sci. Eng., 2000, A286: 48
[29] Eckert J, Holzer J C, Krill III C E, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders [J]. J. Appl. Phys., 1993, 73: 2794
doi: 10.1063/1.353055
[30] Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
doi: 10.1016/j.pmatsci.2008.03.002
[31] Toth L S, Gu C F. Ultrafine-grain metals by severe plastic deformation [J]. Mater. Charact., 2014, 92: 1
doi: 10.1016/j.matchar.2014.02.003
[32] Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion [J]. Acta Mater., 2003, 51: 753
doi: 10.1016/S1359-6454(02)00466-4
[33] Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nat. Mater., 2004, 3: 511
doi: 10.1038/nmat1180
[34] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
[35] Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 1998, 39: 1221
doi: 10.1016/S1359-6462(98)00302-9
[36] Berbon P B, Furukawa M, Horita Z, et al. Influence of pressing speed on microstructural development in equal-channel angular pressing [J]. Metall. Mater. Trans., 1999, 30A: 1989
[37] Straumal B B, Protasova S G, Mazilkin A A, et al. SPD-induced changes of structure and magnetic properties in the Cu-Co alloys [J]. Mater. Lett., 2013, 98: 217
doi: 10.1016/j.matlet.2013.02.058
[38] Gente C, Oehring M, Bormann R. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying [J]. Phys. Rev., 1993, 48B: 13244
[39] Wilde G, Rösner H. Stability aspects of bulk nanostructured metals and composites [J]. J. Mater. Sci., 2007, 42: 1772
doi: 10.1007/s10853-006-0986-7
[40] Sauvage X, Jessner P, Vurpillot F, et al. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation [J]. Scr. Mater., 2008, 58: 1125
doi: 10.1016/j.scriptamat.2008.02.010
[41] Zhang Z L, Guo J M, Dehm G, et al. In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys [J]. Acta Mater., 2017, 138: 42
doi: 10.1016/j.actamat.2017.07.039
[42] Ekiz E H, Lach T G, Averback R S, et al. Microstructural evolution of nanolayered Cu-Nb composites subjected to high-pressure torsion [J]. Acta Mater., 2014, 72: 178
doi: 10.1016/j.actamat.2014.03.040
[43] Wang M, Averback R S, Bellon P, et al. Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation [J]. Acta Mater., 2014, 62: 276
doi: 10.1016/j.actamat.2013.10.009
[44] Edwards D, Sabirov I, Sigle W, et al. Microstructure and thermostability of a W-Cu nanocomposite produced via high-pressure torsion [J]. Philos. Mag., 2012, 92: 4151
doi: 10.1080/14786435.2012.704426
[45] Pouryazdan M, Schwen D, Wang D, et al. Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion [J]. Phys. Rev., 2012, 86B: 144302
[46] Bachmaier A, Kerber M, Setman D, et al. The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion [J]. Acta Mater., 2012, 60: 860
doi: 10.1016/j.actamat.2011.10.044
[47] Quelennec X, Menand A, Le Breton J M, et al. Homogeneous Cu-Fe supersaturated solid solutions prepared by severe plastic deformation [J]. Philos. Mag., 2010, 90: 1179
doi: 10.1080/14786430903313682
[48] Miyazaki T, Terada D, Miyajima Y, et al. Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion [J]. J. Mater. Sci., 2011, 46: 4296
doi: 10.1007/s10853-010-5240-7
[49] Zghal S, Bhattacharya P, Twesten R, et al. Structural and chemical characterization of Cu-Ag and Ni-Ag nanocomposites synthesized by high-energy ball milling [J]. J. Met. Nanocryst. Mater., 2002, 13: 165
[50] Yavari A R, Desré P J, Benameur T. Mechanically driven alloying of immiscible elements [J]. Phys. Rev. Lett., 1992, 68: 2235
doi: 10.1103/PhysRevLett.68.2235
[51] Martin G. Phase stability under irradiation: Ballistic effects [J]. Phys. Rev., 1984, 30B: 1424
[52] Ashkenazy Y, Pant N, Zhou J, et al. Phase evolution of highly immiscible alloys under shear deformation: Kinetic pathways, steady states, and the lever-rule [J]. Acta Mater., 2017, 139: 205
doi: 10.1016/j.actamat.2017.08.014
[53] Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure [J]. Mater. Sci. Eng., 1991, A137: 35
[54] Ferrasse S, Segal V M, Alford F, et al. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries [J]. Mater. Sci. Eng., 2008, A493: 130
[55] Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing [J]. Acta Mater., 1998, 46: 1589
doi: 10.1016/S1359-6454(97)00355-8
[56] Beyerlein I J, Mara N A, Carpenter J S, et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation [J]. J. Mater. Res., 2013, 28: 1799
doi: 10.1557/jmr.2013.21
[57] Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
doi: 10.11900/0412.1961.2016.00358
[57] 王 尧, 朱晓莹, 刘贵民等. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性 [J]. 金属学报, 2017, 53: 183
doi: 10.11900/0412.1961.2016.00358
[58] Zhang X, Zhang J Y, Niu J J, et al. Ductility and fracture behavior of Cu/Nb nanostructured multilayers [J]. Chin. J. Nonferrous Met., 2011, 21: 1404
[58] 张 欣, 张金钰, 牛佳佳等. Cu/Nb纳米多层膜延性及其断裂行为 [J]. 中国有色金属学报, 2011, 21: 1404
[59] Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
[60] Elofsson V, Almyras G A, Lü B, et al. Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium [J]. Acta Mater., 2016, 110: 114
doi: 10.1016/j.actamat.2016.03.023
[61] Hu M, Gao X M, Weng L J, et al. The microstructure and improved mechanical properties of Ag/Cu nanoscaled multilayer films deposited by magnetron sputtering [J]. Appl. Surf. Sci., 2014, 313: 563
doi: 10.1016/j.apsusc.2014.06.023
[62] Zhang X, Hundley M F, Malinowski A, et al. Microstructure and electronic properties of Cu/Mo multilayers and three-dimensional arrays of nanocrystalline Cu precipitates embedded in a Mo matrix [J]. J. Appl. Phys., 2004, 95: 3644
doi: 10.1063/1.1649795
[63] Guo Z Z, Sun Y, Duan Y H, et al. Structure and properties of Cu/Mo nanostructure multilayer deposited by magnetron sputtering [J]. Chin. J. Rare Met., 2012, 36: 92
[63] 郭中正, 孙 勇, 段永华等. 磁控溅射Cu/Mo纳米多层膜的结构与性能 [J]. 稀有金属, 2012, 36: 92
[64] Fenn M, Petford-Long A K, Donovan P E. Electrical resistivity of Cu and Nb thin films and multilayers [J]. J. Magn. Magn. Mater., 1999, 198-199: 231
doi: 10.1016/S0304-8853(98)01062-2
[65] Lima A L, Zhang X, Misra A, et al. Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers [J]. Thin Solid Films, 2007, 515: 3574
doi: 10.1016/j.tsf.2006.11.004
[66] Monclús M A, Karlik M, Callisti M, et al. Microstructure and mechanical properties of physical vapor deposited Cu/W nanoscale multilayers: Influence of layer thickness and temperature [J]. Thin Solid Films, 2014, 571: 275
doi: 10.1016/j.tsf.2014.05.044
[67] Wen S P, Zong R L, Zeng F, et al. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers [J]. Acta Mater., 2007, 55: 345
doi: 10.1016/j.actamat.2006.07.043
[68] Guo Z Z, Sun Y, Duan Y H, et al. Structures and properties of Cu/W nanostructured multilayers deposited by sputtering [J]. Rare Met. Mater. Eng., 2014, 43: 906
[68] 郭中正, 孙 勇, 段永华等. 溅射沉积Cu/W纳米多层膜结构与性能 [J]. 稀有金属材料与工程, 2014, 43: 906
[69] Lai W S, Yang M J. Observation of largely enhanced hardness in nanomultilayers of the Ag-Nb system with positive enthalpy of formation [J]. Appl. Phys. Lett., 2007, 90: 181917
doi: 10.1063/1.2735670
[70] Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
[71] Misra A, Krug H. Deformation behavior of nanostructured metallic multilayers [J]. Adv. Eng. Mater., 2001, 3: 217
doi: 10.1002/(ISSN)1527-2648
[72] Lehoczky S L. Strength enhancement in thin-layered Al-Cu laminates [J]. J. Appl. Phys., 1978, 49: 5479
doi: 10.1063/1.324518
[73] Zhang J Y, Wang Y Q, Wu K, et al. Strain rate sensitivity of nanolayered Cu/X (X=Cr, Zr) micropillars: Effects of heterophase interface/twin boundary [J]. Mater. Sci. Eng., 2014, A612: 28
[74] Zhu X Y, Pan F. Progress in research on the mechanical properties of nanoscale metallic multilayers [J]. Mater. China, 2011, 30(10): 1
[74] 朱晓莹, 潘 峰. 金属纳米多层膜力学性能研究进展 [J]. 中国材料进展, 2011, 30(10): 1
[75] Troche P, Hoffmann J, Heinemann K, et al. Thermally driven shape instabilities of Nb/Cu multilayer structures: Instability of Nb/Cu multilayers [J]. Thin Solid Films, 1999, 353: 33
doi: 10.1016/S0040-6090(99)00365-X
[76] Lee H J, Kwon K W, Ryu C, et al. Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction [J]. Acta Mater., 1999, 47: 3965
doi: 10.1016/S1359-6454(99)00257-8
[77] Moszner F, Cancellieri C, Chiodi M, et al. Thermal stability of Cu/W nano-multilayers [J]. Acta Mater., 2016, 107: 345
doi: 10.1016/j.actamat.2016.02.003
[78] Ma Y J, Wei M Z, Sun C, et al. Length scale effect on the thermal stability of nanoscale Cu/Ag multilayers [J]. Mater. Sci. Eng., 2017, A686: 142
[79] Tsaur B Y, Mayer J W, Tu K N. Ion-beam induced metastable Pt2Si3 phase. I. Formation, structure, and properties [J]. J. Appl. Phys., 1980, 51: 5326
doi: 10.1063/1.327446
[80] Gong H R, Liu B X. Influence of interfacial texture on solid-state amorphization and associated asymmetric growth in immiscible Cu-Ta multilayers [J]. Phys. Rev., 2004, 70B: 134202
[81] Gong H R, Kong L T, Lai W S, et al. Metastable phase formation in an immiscible Cu-Ta system studied by ion-beam mixing, ab initio calculation, and molecular dynamics simulation [J]. Acta Mater., 2003, 51: 3885
doi: 10.1016/S1359-6454(03)00213-1
[82] Gong H R, Liu B X. Unusual alloying behavior at the equilibrium immiscible Cu-Nb interfaces [J]. J. Appl. Phys., 2004, 96: 3020
doi: 10.1063/1.1775042
[83] Wang T L, Li J H, Tai K P, et al. Formation of amorphous phases in an immiscible Cu-Nb system studied by molecular dynamics simulation and ion beam mixing [J]. Scr. Mater., 2007, 57: 157
doi: 10.1016/j.scriptamat.2007.03.006
[84] Gong H R, Kong L T, Lai W S, et al. Glass-forming ability determined by an n-body potential in a highly immiscible Cu-W system through molecular dynamics simulations [J]. Phys. Rev., 2003, 68B: 144201
[85] Bai X, Wang T L, Ding N, et al. Nonequilibrium alloy formation in the immiscible Cu-Mo system studied by thermodynamic calculation and ion beam mixing [J]. J. Appl. Phys., 2010, 108: 073534
doi: 10.1063/1.3483953
[86] Gong H R, Kong L T, Liu B X. Metastability of an immiscible Cu-Mo system calculated from first-principles and a derived n-body potential [J]. Phys. Rev., 2004, 69B: 024202
[87] Yan H F, Shen Y X, Guo H B, et al. Metastable phase formation in the immiscible Cu-Co system studied by thermodynamic, molecular dynamics and ab initio calculations together with ion beam mixing [J]. J. Phys.: Condens. Matter, 2007, 19: 026219
doi: 10.1088/0953-8984/19/2/026219
[88] Tai K P, Dai X D, Shen Y X, et al. Formation and structural anomaly of the metastable phases in an immiscible Ag-Mo system studied by ion beam mixing and molecular dynamics simulation [J]. J. Phys. Chem., 2006, 110B: 595
[89] Tai K P, Dai X D, Liu B X. Spinodal decomposition induced in a highly immiscible Ag-Mo system by ion irradiation [J]. Appl. Phys. Lett., 2006, 88: 184103
doi: 10.1063/1.2201868
[90] Liu J B, Li Z C, Liu B X, et al. Stability of a nonequilibrium phase in an immiscible Ag-Ni system studied by ab initio calculations and ion-beam-mixing experiment [J]. Phys. Rev., 2001, 63B: 132204
[91] Zhang R F, Shen Y X, Gong H R, et al. Atomistic modeling of metastable phase selection of a highly immiscible Ag-W system [J]. J. Phys. Soc. Jpn., 2004, 73: 2023
doi: 10.1143/JPSJ.73.2023
[92] Li G P, Huang Q C, Yang L S, et al. Effects of ion implantation on in vitro pollen germination and cellular organization of pollen tube in Pinus thunbergii parl. (Japanese Black Pine) [J]. Plasma Sci. Technol., 2006, 8: 618
doi: 10.1088/1009-0630/8/5/29
[93] Rossi J O, Ueda M, Mello C B, et al. Short repetitive pulses of 50~75 kV applied to plasma immersion implantation of aerospace materials [J]. IEEE Trans. Plasma Sci., 2009, 37: 204
doi: 10.1109/TPS.2008.2005832
[94] Prudêncio L M, Da Silva R C, da Silva M F, et al. Modification and characterization of Al surfaces implanted with Cr ions [J]. Surf. Coat. Technol., 2000, 128-129: 166
doi: 10.1016/S0257-8972(00)00576-4
[95] Duo S W, Li M S, Zhou Y C. Effect of ion implantation upon erosion resistance of polyimide films in space environment [J]. Trans. Nonferrous Met. Soc. China, 2006, 16(Suppl.2): s661
doi: 10.1016/S1003-6326(06)60273-2
[96] Starikov S V, Insepov Z, Rest J, et al. Radiation-induced damage and evolution of defects in Mo [J]. Phys. Rev., 2011, 84B: 104109
[97] Shu S P, Bellon P, Averback R S. Role of point-defect sinks on irradiation-induced compositional patterning in model binary alloys [J]. Phys. Rev., 2015, 91B: 214107
[98] Zolnikov K P, Korchuganov A V, Kryzhevich D S. Dynamics of dislocation loops in radiation-damaged Fe-10Cr crystallites [J]. J. Phys.: Conf. Ser., 2019, 1147: 012084
doi: 10.1088/1742-6596/1147/1/012084
[99] Shu S P, Zhang X, Beach J A, et al. Irradiation-induced formation of nanorod precipitates in a dilute Cu-W alloy [J]. Scr. Mater., 2016, 115: 155
doi: 10.1016/j.scriptamat.2016.01.012
[100] Du J L, Huang Y, Liu J W, et al. Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin [J]. Mater. Des., 2019, 170: 107699
doi: 10.1016/j.matdes.2019.107699
[101] Li L T, Zhang J, Pan X C, et al. Induction of diffusion and construction of metallurgical interfaces directly between immiscible Mo and Ag by irradiation-induced point defects [J]. RSC Adv., 2017, 7: 53763
doi: 10.1039/C7RA11115K
[102] Du J L, Huang Y, Xiao C, et al. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA) [J]. J. Mater. Sci. Technol., 2018, 34: 689
doi: 10.1016/j.jmst.2017.10.009
[103] Liu Z Z. Research on prepartion of laminar metal matrix composites based on immiscible alloy systems with irradiation damage alloying mechanism [D]. Tianjin: Tianjin University, 2012
[103] 刘贞贞. 辐照损伤合金化制备互不固溶层状金属基复合材料的研究 [D]. 天津: 天津大学, 2012
[104] Paul A, van Dal M J H, Kodentsov A A, et al. The Kirkendall effect in multiphase diffusion [J]. Acta Mater., 2004, 52: 623
doi: 10.1016/j.actamat.2003.10.007
[105] Jiao X Y, Wang X H, Feng P Z, et al. Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 440
[106] Alimadadi H, Kjartansdóttir C, Burrows A, et al. Nickel-aluminum diffusion: A study of evolution of microstructure and phase [J]. Mater. Charact., 2017, 130: 105
doi: 10.1016/j.matchar.2017.05.039
[107] Pan X C, Zhang J, Huang Y, et al. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method [J]. J. Alloys Compd., 2017, 723: 1053
doi: 10.1016/j.jallcom.2017.06.314
[108] Zhang J, Huang Y, Liu Y C, et al. Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper's melting point [J]. Mater. Des., 2018, 137: 473
doi: 10.1016/j.matdes.2017.10.052
[109] Zhang J, Huang Y, Wang Z M, et al. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range [J]. J. Alloys Compd., 2019, 774: 939
doi: 10.1016/j.jallcom.2018.09.385
[110] Yi X H. Properties of formation and growth of cluster structures during solidification processes of liquid metal Cu [J]. Mater. Rep., 2015, 29B(24): 122
[110] 易学华. 熔体金属铜凝固过程中原子团簇结构的形成与生长特性 [J]. 材料导报, 2015, 29B(24): 122
[111] Yi X H, Liu R S, Tian Z A, et al. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid metal Cu [J]. Acta Phys. Sin., 2006, 55: 5386
[111] 易学华, 刘让苏, 田泽安等. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究 [J]. 物理学报, 2006, 55: 5386
doi: 10.7498/aps.55.5386
[112] Wang H L, Wang X X, Liang H Y. Molecular dynamics simulation and analysis of bulk and surface melting processes for metal Cu [J]. Acta Metall. Sin., 2005, 41: 568
[112] 王海龙, 王秀喜, 梁海戈. 金属Cu体熔化与表面熔化行为的分子动力学模拟与分析 [J]. 金属学报, 2005, 41: 568
[113] Yang G Q, Li J F, Shi Q W, et al. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: A molecular dynamics study [J]. Comput. Mater. Sci., 2014, 86: 64
doi: 10.1016/j.commatsci.2014.01.028
[114] Li G L, Wu H Y, Luo H L, et al. Diffusion behavior of Cu/Ta heterogeneous interface under high temperature and high strain: An atomistic investigation [J]. AIP Adv., 2017, 7: 095320
doi: 10.1063/1.4997677
[115] Zhang J M, Chen G X, Xu K W. Atomistic study of self-diffusion in Cu-Ag immiscible alloy system [J]. J. Alloys Compd., 2006, 425: 169
doi: 10.1016/j.jallcom.2006.01.042
[116] Chen S D, Soh A K, Ke F J. Molecular dynamics modeling of diffusion bonding [J]. Scr. Mater., 2005, 52: 1135
doi: 10.1016/j.scriptamat.2005.02.004
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[4] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[5] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[6] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[13] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[15] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.