|
|
二元互不固溶金属合金化的研究进展 |
黄远( ), 杜金龙, 王祖敏 |
天津大学材料科学与工程学院 天津 300354 |
|
Progress in Research on the Alloying of Binary Immiscible Metals |
HUANG Yuan( ), DU Jinlong, WANG Zumin |
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
Yuan HUANG,
Jinlong DU,
Zumin WANG.
Progress in Research on the Alloying of Binary Immiscible Metals[J]. Acta Metall Sin, 2020, 56(6): 801-820.
[1] |
Ma E. Alloys created between immiscible elements [J]. Prog. Mater. Sci., 2005, 50: 413
doi: 10.1016/j.pmatsci.2004.07.001
|
[2] |
Lu G H, Zhou H B, Becquart C S. A review of modelling and simulation of hydrogen behaviour in tungsten at different scales [J]. Nucl. Fusion, 2014, 54: 086001
doi: 10.1088/0029-5515/54/8/086001
|
[3] |
Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2011, 415: S2
|
[4] |
Chen W G, Dong L L, Zhang H, et al. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique [J]. Mater. Lett., 2017, 205: 198
doi: 10.1016/j.matlet.2017.06.090
|
[5] |
Wang F T, Wu Y C, Wang T G, et al. Fabrication and properties of the W-Cu gradient heat sink materials for plasma facing materials [J]. Acta Mater. Comp. Sin., 2008, 25(2): 25
|
[5] |
汪峰涛, 吴玉程, 王涂根等. W-Cu面对等离子体梯度热沉材料的制备和性能 [J]. 复合材料学报, 2008, 25(2): 25
|
[6] |
Shikov A, Pantsyrnyi V, Vorobieva A, et al. High strength, high conductivity Cu-Nb based conductors with nanoscaled microstructure [J]. Physica, 2001, 354C: 410
|
[7] |
Yano S, Matsui H, Morozumi S. Structural observations of the interface of explosion-bonded Mo/Cu system [J]. J. Mater. Sci., 1998, 33: 4857
doi: 10.1023/A:1004438515248
|
[8] |
Yoshida N. Review of recent works in development and evaluation of high-Z plasma facing materials [J]. J. Nucl. Mater., 1999, 266-269: 197
doi: 10.1016/S0022-3115(98)00817-4
|
[9] |
Taghavi Pourian Azar G, Rezaie H R, Gohari B, et al. Synthesis and densification of W-Cu, W-Cu-Ag and W-Ag composite powders via a chemical precipitation method [J]. J. Alloys Compd., 2013, 574: 432
doi: 10.1016/j.jallcom.2013.04.172
|
[10] |
Huang Y, Kong D Y, He F, et al. Preparation of Mo/Ag laminar composites by using irradiation damage alloying method [J]. Acta Metall. Sin., 2012, 48: 1253
doi: 10.3724/SP.J.1037.2011.00811
|
[10] |
黄 远, 孔德月, 何 芳等. 辐照损伤合金化制备Mo/Ag层状复合材料 [J]. 金属学报, 2012, 48: 1253
doi: 10.3724/SP.J.1037.2011.00811
|
[11] |
Findik F, Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials [J]. Mater. Des., 2003, 24: 489
doi: 10.1016/S0261-3069(03)00125-0
|
[12] |
Wu F, Bellon P, Melmed A J, et al. Forced mixing and nanoscale decomposition in ball-milled Cu-Ag characterized by APFIM [J]. Acta Mater., 2001, 49: 453
doi: 10.1016/S1359-6454(00)00329-3
|
[13] |
Xi S Q, Zuo K S, Li X G, et al. Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr(Mo) [J]. Acta Mater., 2008, 56: 6050
doi: 10.1016/j.actamat.2008.08.013
|
[14] |
Al-Aqeeli N, Hussein M A, Suryanarayana C. Phase evolution during high energy ball milling of immiscible Nb-Zr alloys [J]. Adv. Powder Technol., 2015, 26: 385
doi: 10.1016/j.apt.2014.11.008
|
[15] |
Martínez C, Ordoñez S, Serafini D, et al. Study of the formation and thermal stability of Mg2Co obtained by mechanical alloying and heat treatment [J]. J. Alloys Compd., 2014, 590: 469
doi: 10.1016/j.jallcom.2013.12.123
|
[16] |
Musu E, Mura G, Ligios G, et al. Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi [J]. J. Alloys Compd., 2013, 576: 80
doi: 10.1016/j.jallcom.2013.04.124
|
[17] |
Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
|
[18] |
Selvakumar N, Vettivel S C. Thermal, electrical and wear behavior of sintered Cu-W nanocomposite [J]. Mater. Des., 2013, 46: 16
doi: 10.1016/j.matdes.2012.09.055
|
[19] |
Darling K A, Roberts A J, Mishin Y, et al. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum [J]. J. Alloys Compd., 2013, 573: 142
doi: 10.1016/j.jallcom.2013.03.177
|
[20] |
Rajagopalan M, Darling K, Turnage S, et al. Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study [J]. Mater. Des., 2017, 113: 178
doi: 10.1016/j.matdes.2016.10.020
|
[21] |
Ren F Z, Zhu W W, Chu K J, et al. Tribological and corrosion behaviors of bulk Cu-W nanocomposites fabricated by mechanical alloying and warm pressing [J]. J. Alloys Compd., 2016, 676: 164
doi: 10.1016/j.jallcom.2016.03.141
|
[22] |
López J M, Alonso J A, Gallego L J. Determination of the glass-forming concentration range in binary alloys from a semiempirical theory: Application to Zr-based alloys [J]. Phys. Rev., 1987, 36B: 3716
|
[23] |
Zuo K S, Xi S Q, Zhou J E. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1206
doi: 10.1016/S1003-6326(08)60430-6
|
[24] |
Ran G, Zhou J E, Xi S Q, et al. Study on phase transformation and thermodynamic and kinetic of Al-Pb powder during mechanical alloying [J]. Heat Treat. Met., 2004, 29(7): 49
|
[24] |
冉 广, 周敬恩, 席生岐等. 机械合金化过程中Al-Pb相变的热力学和动力学研究 [J]. 金属热处理, 2004, 29(7): 49
|
[25] |
Sheibani S, Heshmati-Manesh S, Ataie A. Structural investigation on nano-crystalline Cu-Cr supersaturated solid solution prepared by mechanical alloying [J]. J. Alloys Compd., 2010, 495: 59
doi: 10.1016/j.jallcom.2010.02.034
|
[26] |
Wu Z F, Zhou F, Cheng Z. Mechanical alloying of Ag-Cu nanocrystalline supersaturated solid solution [J]. Powder Metall. Ind., 2015, 25(5): 13
|
[26] |
吴志方, 周 帆, 程 钊. 机械合金化制备Ag-Cu纳米晶过饱和固溶体 [J]. 粉末冶金工业, 2015, 25(5): 13
|
[27] |
Wu Z F, Zhou F. Mechanical alloying of Co-Cu nano-crystalline supersaturated solid solution [J]. China Powder Sci. Technol., 2015, 21(2): 64
|
[27] |
吴志方, 周 帆. 机械合金化制备Co-Cu纳米晶过饱和固溶体 [J]. 中国粉体技术, 2015, 21(2): 64
|
[28] |
Ma E, Sheng H W, He J H, et al. Solid-state alloying in nanostructured binary systems with positive heat of mixing [J]. Mater. Sci. Eng., 2000, A286: 48
|
[29] |
Eckert J, Holzer J C, Krill III C E, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders [J]. J. Appl. Phys., 1993, 73: 2794
doi: 10.1063/1.353055
|
[30] |
Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
doi: 10.1016/j.pmatsci.2008.03.002
|
[31] |
Toth L S, Gu C F. Ultrafine-grain metals by severe plastic deformation [J]. Mater. Charact., 2014, 92: 1
doi: 10.1016/j.matchar.2014.02.003
|
[32] |
Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion [J]. Acta Mater., 2003, 51: 753
doi: 10.1016/S1359-6454(02)00466-4
|
[33] |
Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nat. Mater., 2004, 3: 511
doi: 10.1038/nmat1180
|
[34] |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
|
[35] |
Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 1998, 39: 1221
doi: 10.1016/S1359-6462(98)00302-9
|
[36] |
Berbon P B, Furukawa M, Horita Z, et al. Influence of pressing speed on microstructural development in equal-channel angular pressing [J]. Metall. Mater. Trans., 1999, 30A: 1989
|
[37] |
Straumal B B, Protasova S G, Mazilkin A A, et al. SPD-induced changes of structure and magnetic properties in the Cu-Co alloys [J]. Mater. Lett., 2013, 98: 217
doi: 10.1016/j.matlet.2013.02.058
|
[38] |
Gente C, Oehring M, Bormann R. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying [J]. Phys. Rev., 1993, 48B: 13244
|
[39] |
Wilde G, Rösner H. Stability aspects of bulk nanostructured metals and composites [J]. J. Mater. Sci., 2007, 42: 1772
doi: 10.1007/s10853-006-0986-7
|
[40] |
Sauvage X, Jessner P, Vurpillot F, et al. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation [J]. Scr. Mater., 2008, 58: 1125
doi: 10.1016/j.scriptamat.2008.02.010
|
[41] |
Zhang Z L, Guo J M, Dehm G, et al. In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys [J]. Acta Mater., 2017, 138: 42
doi: 10.1016/j.actamat.2017.07.039
|
[42] |
Ekiz E H, Lach T G, Averback R S, et al. Microstructural evolution of nanolayered Cu-Nb composites subjected to high-pressure torsion [J]. Acta Mater., 2014, 72: 178
doi: 10.1016/j.actamat.2014.03.040
|
[43] |
Wang M, Averback R S, Bellon P, et al. Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation [J]. Acta Mater., 2014, 62: 276
doi: 10.1016/j.actamat.2013.10.009
|
[44] |
Edwards D, Sabirov I, Sigle W, et al. Microstructure and thermostability of a W-Cu nanocomposite produced via high-pressure torsion [J]. Philos. Mag., 2012, 92: 4151
doi: 10.1080/14786435.2012.704426
|
[45] |
Pouryazdan M, Schwen D, Wang D, et al. Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion [J]. Phys. Rev., 2012, 86B: 144302
|
[46] |
Bachmaier A, Kerber M, Setman D, et al. The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion [J]. Acta Mater., 2012, 60: 860
doi: 10.1016/j.actamat.2011.10.044
|
[47] |
Quelennec X, Menand A, Le Breton J M, et al. Homogeneous Cu-Fe supersaturated solid solutions prepared by severe plastic deformation [J]. Philos. Mag., 2010, 90: 1179
doi: 10.1080/14786430903313682
|
[48] |
Miyazaki T, Terada D, Miyajima Y, et al. Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion [J]. J. Mater. Sci., 2011, 46: 4296
doi: 10.1007/s10853-010-5240-7
|
[49] |
Zghal S, Bhattacharya P, Twesten R, et al. Structural and chemical characterization of Cu-Ag and Ni-Ag nanocomposites synthesized by high-energy ball milling [J]. J. Met. Nanocryst. Mater., 2002, 13: 165
|
[50] |
Yavari A R, Desré P J, Benameur T. Mechanically driven alloying of immiscible elements [J]. Phys. Rev. Lett., 1992, 68: 2235
doi: 10.1103/PhysRevLett.68.2235
|
[51] |
Martin G. Phase stability under irradiation: Ballistic effects [J]. Phys. Rev., 1984, 30B: 1424
|
[52] |
Ashkenazy Y, Pant N, Zhou J, et al. Phase evolution of highly immiscible alloys under shear deformation: Kinetic pathways, steady states, and the lever-rule [J]. Acta Mater., 2017, 139: 205
doi: 10.1016/j.actamat.2017.08.014
|
[53] |
Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure [J]. Mater. Sci. Eng., 1991, A137: 35
|
[54] |
Ferrasse S, Segal V M, Alford F, et al. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries [J]. Mater. Sci. Eng., 2008, A493: 130
|
[55] |
Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing [J]. Acta Mater., 1998, 46: 1589
doi: 10.1016/S1359-6454(97)00355-8
|
[56] |
Beyerlein I J, Mara N A, Carpenter J S, et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation [J]. J. Mater. Res., 2013, 28: 1799
doi: 10.1557/jmr.2013.21
|
[57] |
Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
doi: 10.11900/0412.1961.2016.00358
|
[57] |
王 尧, 朱晓莹, 刘贵民等. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性 [J]. 金属学报, 2017, 53: 183
doi: 10.11900/0412.1961.2016.00358
|
[58] |
Zhang X, Zhang J Y, Niu J J, et al. Ductility and fracture behavior of Cu/Nb nanostructured multilayers [J]. Chin. J. Nonferrous Met., 2011, 21: 1404
|
[58] |
张 欣, 张金钰, 牛佳佳等. Cu/Nb纳米多层膜延性及其断裂行为 [J]. 中国有色金属学报, 2011, 21: 1404
|
[59] |
Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
|
[60] |
Elofsson V, Almyras G A, Lü B, et al. Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium [J]. Acta Mater., 2016, 110: 114
doi: 10.1016/j.actamat.2016.03.023
|
[61] |
Hu M, Gao X M, Weng L J, et al. The microstructure and improved mechanical properties of Ag/Cu nanoscaled multilayer films deposited by magnetron sputtering [J]. Appl. Surf. Sci., 2014, 313: 563
doi: 10.1016/j.apsusc.2014.06.023
|
[62] |
Zhang X, Hundley M F, Malinowski A, et al. Microstructure and electronic properties of Cu/Mo multilayers and three-dimensional arrays of nanocrystalline Cu precipitates embedded in a Mo matrix [J]. J. Appl. Phys., 2004, 95: 3644
doi: 10.1063/1.1649795
|
[63] |
Guo Z Z, Sun Y, Duan Y H, et al. Structure and properties of Cu/Mo nanostructure multilayer deposited by magnetron sputtering [J]. Chin. J. Rare Met., 2012, 36: 92
|
[63] |
郭中正, 孙 勇, 段永华等. 磁控溅射Cu/Mo纳米多层膜的结构与性能 [J]. 稀有金属, 2012, 36: 92
|
[64] |
Fenn M, Petford-Long A K, Donovan P E. Electrical resistivity of Cu and Nb thin films and multilayers [J]. J. Magn. Magn. Mater., 1999, 198-199: 231
doi: 10.1016/S0304-8853(98)01062-2
|
[65] |
Lima A L, Zhang X, Misra A, et al. Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers [J]. Thin Solid Films, 2007, 515: 3574
doi: 10.1016/j.tsf.2006.11.004
|
[66] |
Monclús M A, Karlik M, Callisti M, et al. Microstructure and mechanical properties of physical vapor deposited Cu/W nanoscale multilayers: Influence of layer thickness and temperature [J]. Thin Solid Films, 2014, 571: 275
doi: 10.1016/j.tsf.2014.05.044
|
[67] |
Wen S P, Zong R L, Zeng F, et al. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers [J]. Acta Mater., 2007, 55: 345
doi: 10.1016/j.actamat.2006.07.043
|
[68] |
Guo Z Z, Sun Y, Duan Y H, et al. Structures and properties of Cu/W nanostructured multilayers deposited by sputtering [J]. Rare Met. Mater. Eng., 2014, 43: 906
|
[68] |
郭中正, 孙 勇, 段永华等. 溅射沉积Cu/W纳米多层膜结构与性能 [J]. 稀有金属材料与工程, 2014, 43: 906
|
[69] |
Lai W S, Yang M J. Observation of largely enhanced hardness in nanomultilayers of the Ag-Nb system with positive enthalpy of formation [J]. Appl. Phys. Lett., 2007, 90: 181917
doi: 10.1063/1.2735670
|
[70] |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
[71] |
Misra A, Krug H. Deformation behavior of nanostructured metallic multilayers [J]. Adv. Eng. Mater., 2001, 3: 217
doi: 10.1002/(ISSN)1527-2648
|
[72] |
Lehoczky S L. Strength enhancement in thin-layered Al-Cu laminates [J]. J. Appl. Phys., 1978, 49: 5479
doi: 10.1063/1.324518
|
[73] |
Zhang J Y, Wang Y Q, Wu K, et al. Strain rate sensitivity of nanolayered Cu/X (X=Cr, Zr) micropillars: Effects of heterophase interface/twin boundary [J]. Mater. Sci. Eng., 2014, A612: 28
|
[74] |
Zhu X Y, Pan F. Progress in research on the mechanical properties of nanoscale metallic multilayers [J]. Mater. China, 2011, 30(10): 1
|
[74] |
朱晓莹, 潘 峰. 金属纳米多层膜力学性能研究进展 [J]. 中国材料进展, 2011, 30(10): 1
|
[75] |
Troche P, Hoffmann J, Heinemann K, et al. Thermally driven shape instabilities of Nb/Cu multilayer structures: Instability of Nb/Cu multilayers [J]. Thin Solid Films, 1999, 353: 33
doi: 10.1016/S0040-6090(99)00365-X
|
[76] |
Lee H J, Kwon K W, Ryu C, et al. Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction [J]. Acta Mater., 1999, 47: 3965
doi: 10.1016/S1359-6454(99)00257-8
|
[77] |
Moszner F, Cancellieri C, Chiodi M, et al. Thermal stability of Cu/W nano-multilayers [J]. Acta Mater., 2016, 107: 345
doi: 10.1016/j.actamat.2016.02.003
|
[78] |
Ma Y J, Wei M Z, Sun C, et al. Length scale effect on the thermal stability of nanoscale Cu/Ag multilayers [J]. Mater. Sci. Eng., 2017, A686: 142
|
[79] |
Tsaur B Y, Mayer J W, Tu K N. Ion-beam induced metastable Pt2Si3 phase. I. Formation, structure, and properties [J]. J. Appl. Phys., 1980, 51: 5326
doi: 10.1063/1.327446
|
[80] |
Gong H R, Liu B X. Influence of interfacial texture on solid-state amorphization and associated asymmetric growth in immiscible Cu-Ta multilayers [J]. Phys. Rev., 2004, 70B: 134202
|
[81] |
Gong H R, Kong L T, Lai W S, et al. Metastable phase formation in an immiscible Cu-Ta system studied by ion-beam mixing, ab initio calculation, and molecular dynamics simulation [J]. Acta Mater., 2003, 51: 3885
doi: 10.1016/S1359-6454(03)00213-1
|
[82] |
Gong H R, Liu B X. Unusual alloying behavior at the equilibrium immiscible Cu-Nb interfaces [J]. J. Appl. Phys., 2004, 96: 3020
doi: 10.1063/1.1775042
|
[83] |
Wang T L, Li J H, Tai K P, et al. Formation of amorphous phases in an immiscible Cu-Nb system studied by molecular dynamics simulation and ion beam mixing [J]. Scr. Mater., 2007, 57: 157
doi: 10.1016/j.scriptamat.2007.03.006
|
[84] |
Gong H R, Kong L T, Lai W S, et al. Glass-forming ability determined by an n-body potential in a highly immiscible Cu-W system through molecular dynamics simulations [J]. Phys. Rev., 2003, 68B: 144201
|
[85] |
Bai X, Wang T L, Ding N, et al. Nonequilibrium alloy formation in the immiscible Cu-Mo system studied by thermodynamic calculation and ion beam mixing [J]. J. Appl. Phys., 2010, 108: 073534
doi: 10.1063/1.3483953
|
[86] |
Gong H R, Kong L T, Liu B X. Metastability of an immiscible Cu-Mo system calculated from first-principles and a derived n-body potential [J]. Phys. Rev., 2004, 69B: 024202
|
[87] |
Yan H F, Shen Y X, Guo H B, et al. Metastable phase formation in the immiscible Cu-Co system studied by thermodynamic, molecular dynamics and ab initio calculations together with ion beam mixing [J]. J. Phys.: Condens. Matter, 2007, 19: 026219
doi: 10.1088/0953-8984/19/2/026219
|
[88] |
Tai K P, Dai X D, Shen Y X, et al. Formation and structural anomaly of the metastable phases in an immiscible Ag-Mo system studied by ion beam mixing and molecular dynamics simulation [J]. J. Phys. Chem., 2006, 110B: 595
|
[89] |
Tai K P, Dai X D, Liu B X. Spinodal decomposition induced in a highly immiscible Ag-Mo system by ion irradiation [J]. Appl. Phys. Lett., 2006, 88: 184103
doi: 10.1063/1.2201868
|
[90] |
Liu J B, Li Z C, Liu B X, et al. Stability of a nonequilibrium phase in an immiscible Ag-Ni system studied by ab initio calculations and ion-beam-mixing experiment [J]. Phys. Rev., 2001, 63B: 132204
|
[91] |
Zhang R F, Shen Y X, Gong H R, et al. Atomistic modeling of metastable phase selection of a highly immiscible Ag-W system [J]. J. Phys. Soc. Jpn., 2004, 73: 2023
doi: 10.1143/JPSJ.73.2023
|
[92] |
Li G P, Huang Q C, Yang L S, et al. Effects of ion implantation on in vitro pollen germination and cellular organization of pollen tube in Pinus thunbergii parl. (Japanese Black Pine) [J]. Plasma Sci. Technol., 2006, 8: 618
doi: 10.1088/1009-0630/8/5/29
|
[93] |
Rossi J O, Ueda M, Mello C B, et al. Short repetitive pulses of 50~75 kV applied to plasma immersion implantation of aerospace materials [J]. IEEE Trans. Plasma Sci., 2009, 37: 204
doi: 10.1109/TPS.2008.2005832
|
[94] |
Prudêncio L M, Da Silva R C, da Silva M F, et al. Modification and characterization of Al surfaces implanted with Cr ions [J]. Surf. Coat. Technol., 2000, 128-129: 166
doi: 10.1016/S0257-8972(00)00576-4
|
[95] |
Duo S W, Li M S, Zhou Y C. Effect of ion implantation upon erosion resistance of polyimide films in space environment [J]. Trans. Nonferrous Met. Soc. China, 2006, 16(Suppl.2): s661
doi: 10.1016/S1003-6326(06)60273-2
|
[96] |
Starikov S V, Insepov Z, Rest J, et al. Radiation-induced damage and evolution of defects in Mo [J]. Phys. Rev., 2011, 84B: 104109
|
[97] |
Shu S P, Bellon P, Averback R S. Role of point-defect sinks on irradiation-induced compositional patterning in model binary alloys [J]. Phys. Rev., 2015, 91B: 214107
|
[98] |
Zolnikov K P, Korchuganov A V, Kryzhevich D S. Dynamics of dislocation loops in radiation-damaged Fe-10Cr crystallites [J]. J. Phys.: Conf. Ser., 2019, 1147: 012084
doi: 10.1088/1742-6596/1147/1/012084
|
[99] |
Shu S P, Zhang X, Beach J A, et al. Irradiation-induced formation of nanorod precipitates in a dilute Cu-W alloy [J]. Scr. Mater., 2016, 115: 155
doi: 10.1016/j.scriptamat.2016.01.012
|
[100] |
Du J L, Huang Y, Liu J W, et al. Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin [J]. Mater. Des., 2019, 170: 107699
doi: 10.1016/j.matdes.2019.107699
|
[101] |
Li L T, Zhang J, Pan X C, et al. Induction of diffusion and construction of metallurgical interfaces directly between immiscible Mo and Ag by irradiation-induced point defects [J]. RSC Adv., 2017, 7: 53763
doi: 10.1039/C7RA11115K
|
[102] |
Du J L, Huang Y, Xiao C, et al. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA) [J]. J. Mater. Sci. Technol., 2018, 34: 689
doi: 10.1016/j.jmst.2017.10.009
|
[103] |
Liu Z Z. Research on prepartion of laminar metal matrix composites based on immiscible alloy systems with irradiation damage alloying mechanism [D]. Tianjin: Tianjin University, 2012
|
[103] |
刘贞贞. 辐照损伤合金化制备互不固溶层状金属基复合材料的研究 [D]. 天津: 天津大学, 2012
|
[104] |
Paul A, van Dal M J H, Kodentsov A A, et al. The Kirkendall effect in multiphase diffusion [J]. Acta Mater., 2004, 52: 623
doi: 10.1016/j.actamat.2003.10.007
|
[105] |
Jiao X Y, Wang X H, Feng P Z, et al. Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 440
|
[106] |
Alimadadi H, Kjartansdóttir C, Burrows A, et al. Nickel-aluminum diffusion: A study of evolution of microstructure and phase [J]. Mater. Charact., 2017, 130: 105
doi: 10.1016/j.matchar.2017.05.039
|
[107] |
Pan X C, Zhang J, Huang Y, et al. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method [J]. J. Alloys Compd., 2017, 723: 1053
doi: 10.1016/j.jallcom.2017.06.314
|
[108] |
Zhang J, Huang Y, Liu Y C, et al. Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper's melting point [J]. Mater. Des., 2018, 137: 473
doi: 10.1016/j.matdes.2017.10.052
|
[109] |
Zhang J, Huang Y, Wang Z M, et al. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range [J]. J. Alloys Compd., 2019, 774: 939
doi: 10.1016/j.jallcom.2018.09.385
|
[110] |
Yi X H. Properties of formation and growth of cluster structures during solidification processes of liquid metal Cu [J]. Mater. Rep., 2015, 29B(24): 122
|
[110] |
易学华. 熔体金属铜凝固过程中原子团簇结构的形成与生长特性 [J]. 材料导报, 2015, 29B(24): 122
|
[111] |
Yi X H, Liu R S, Tian Z A, et al. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid metal Cu [J]. Acta Phys. Sin., 2006, 55: 5386
|
[111] |
易学华, 刘让苏, 田泽安等. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究 [J]. 物理学报, 2006, 55: 5386
doi: 10.7498/aps.55.5386
|
[112] |
Wang H L, Wang X X, Liang H Y. Molecular dynamics simulation and analysis of bulk and surface melting processes for metal Cu [J]. Acta Metall. Sin., 2005, 41: 568
|
[112] |
王海龙, 王秀喜, 梁海戈. 金属Cu体熔化与表面熔化行为的分子动力学模拟与分析 [J]. 金属学报, 2005, 41: 568
|
[113] |
Yang G Q, Li J F, Shi Q W, et al. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: A molecular dynamics study [J]. Comput. Mater. Sci., 2014, 86: 64
doi: 10.1016/j.commatsci.2014.01.028
|
[114] |
Li G L, Wu H Y, Luo H L, et al. Diffusion behavior of Cu/Ta heterogeneous interface under high temperature and high strain: An atomistic investigation [J]. AIP Adv., 2017, 7: 095320
doi: 10.1063/1.4997677
|
[115] |
Zhang J M, Chen G X, Xu K W. Atomistic study of self-diffusion in Cu-Ag immiscible alloy system [J]. J. Alloys Compd., 2006, 425: 169
doi: 10.1016/j.jallcom.2006.01.042
|
[116] |
Chen S D, Soh A K, Ke F J. Molecular dynamics modeling of diffusion bonding [J]. Scr. Mater., 2005, 52: 1135
doi: 10.1016/j.scriptamat.2005.02.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|