|
|
电弧复合磁控溅射结合热退火制备Ti2AlC涂层 |
李文涛1,2,王振玉2,张栋2,潘建国1,柯培玲2( ),汪爱英2 |
1. 宁波大学材料科学与化学工程学院 宁波 315201 2. 中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室 宁波 315201 |
|
Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing |
Wentao LI1,2,Zhenyu WANG2,Dong ZHANG2,Jianguo PAN1,Peiling KE2( ),Aiying WANG2 |
1. Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China 2. Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
引用本文:
李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
Wentao LI,
Zhenyu WANG,
Dong ZHANG,
Jianguo PAN,
Peiling KE,
Aiying WANG.
Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. Acta Metall Sin, 2019, 55(5): 647-656.
[1] | BarsoumM W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates[J]. Prog. Solid State Chem., 2000, 28: 201 | [2] | EklundP, BeckersM, JanssonU, et al. The Mn+1AXn phases: Materials science and thin-film processing[J]. Thin Solid Films, 2010, 518: 1851 | [3] | YangH Y, ZhangR Q, PengX M, et al. Research progress regarding surface coating of zirconium alloy cladding[J].Surf. Technol., 2017, 46(1): 69 | [3] | (杨红艳, 张瑞谦, 彭小明等. 锆合金包壳表面涂层研究进展 [J]. 表面技术, 2017, 46(1): 69) | [4] | YuehK, TerraniK A. Silicon carbide composite for light water reactor fuel assembly applications[J]. J. Nucl. Mater., 2014, 448: 380 | [5] | TerraniK A, ZinkleS J, SneadL L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. J. Nucl. Mater., 2014, 448: 420 | [6] | LuoK, ZhaX H, HuangQ, et al. Theoretical investigations on helium trapping in the Zr/Ti2AlC interface[J]. Surf. Coat. Technol., 2017, 322: 19 | [7] | BasuS, ObandoN, GowdyA, et al. Long-term oxidation of Ti2AlC in air and water vapor at 1000-1300 ℃ temperature range[J]. J. Electrochem. Soc., 2012, 159: C90 | [8] | LiS B, SongG M, KwakernaakK, et al. Multiple crack healing of a Ti2AlC ceramic[J]. J. Eur. Ceram. Soc., 2012, 32: 1813 | [9] | MaierB R, Garcia-DiazB L, HauchB, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. J. Nucl. Mater., 2015, 466: 712 | [10] | FrodeliusJ, EklundP, BeckersM, et al. Sputter deposition from a Ti2AlC target: Process characterization and conditions for growth of Ti2AlC[J]. Thin Solid Films, 2010, 518: 1621 | [11] | FengZ J, KeP L, WangA Y. Preparation of Ti2AlC MAX phase coating by DC magnetron sputtering deposition and vacuum heat treatment[J]. J. Mater. Sci. Technol., 2015, 31: 1193 | [12] | FengZ J, KeP L, HuangQ, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor[J]. Surf. Coat. Technol., 2015, 272: 380 | [13] | FuJ J, ZhangT F, XiaQ X, et al. Oxidation and corrosion behavior of nanolaminated MAX-phase Ti2AlC film synthesized by high-power impulse magnetron sputtering and annealing[J]. J. Nanomater., 2015, 2015: 213128 | [14] | YeomH, HauchB, CaoG P, et al. Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate[J]. Thin Solid Films, 2016, 615: 202 | [15] | TangC, KlimenkovM, JaentschU, et al. Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing[J]. Surf. Coat. Technol., 2017, 309: 445 | [16] | GuenetteM C, TuckerM D, IonescuM, et al. Cathodic arc co-deposition of highly oriented hexagonal Ti and Ti2AlC MAX phase thin film[J]. Thin Solid Films, 2010, 519: 766 | [17] | RosénJ, RyvesL, O ?PerssonP , et al. Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc[J]. J. Appl. Phys., 2007, 101: 056101 | [18] | ShuR, GeF F, MengF P, et al. One-step synthesis of polycrystalline V2AlC thin films on amorphous substrates by magnetron co-sputtering[J]. Vacuum, 2017, 146: 106 | [19] | WangJ Y, ZhouY C, LiaoT, et al. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies[J]. Scr. Mater., 2008, 58: 227 | [20] | LiJ J, HuL F, LiF Z, et al. Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 ℃ and 500 ℃[J]. Surf. Coat. Technol., 2010, 204: 3838 | [21] | SuR R, ZhangH L, O'ConnorD J, et al. Deposition and characterization of Ti2AlC MAX phase and Ti3AlC thin films by magnetron sputtering[J]. Mater. Lett., 2016, 179: 194 | [22] | LiuJ Z, ZuoX, WangZ Y, et al. Fabrication and mechanical properties of high purity of Cr2Al Ccoatings by adjustable Al contents[J]. J. Alloys Compd., 2018, 753: 11 | [23] | LiY M, ZhaoG R, QianY H, et al. Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets[J]. Vacuum, 2018, 153: 62 | [24] | WangZ Y, LiuJ Z, WangL, et al. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J]. Appl. Surf. Sci., 2017, 396: 1435 | [25] | LowI M, PangW K, KennedyS J, et al. High-temperature thermal stability of Ti2AlN and Ti4AlN3: A comparative diffraction study[J]. J. Eur. Ceram. Soc., 2011, 31: 159 | [26] | WilhelmssonO, PalmquistJ P, NybergT, et al. Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering[J]. Appl. Phys. Lett., 2004, 85: 1066 | [27] | LiJ J, QianY H, NiuD, et al. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment[J]. Appl. Surf. Sci., 2012, 263: 457 | [28] | MiernikK, WalkowiczJ. Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs[J]. Surf. Coat. Technol., 2000, 125: 161 | [29] | BandyopadhyayD, SharmaR C, ChakrabortiN. The Ti-Al-C system (titanium-aluminum-carbon)[J]. J. Phase Equilib., 2000, 21: 195 | [30] | PresserV, NaguibM, ChaputL, et al. First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2[J]. J. Raman Spectro., 2012, 43: 168 | [31] | HakamadaM, NakamotoY, MatsumotoH, et al. Relationship between hardness and grain size in electrodeposited copper films[J]. Mater. Sci. Eng., 2007, A457: 120 | [32] | TangC C, SteinbrueckM, StueberM, et al. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4[J]. Corros. Sci., 2018, 135: 87 | [33] | WangJ M, WangJ Y, ZhouY C. Stable M2AlC (0001) surfaces (M=Ti, V and Cr) by first-principles investigation[J]. J. Phys. Condens Matter, 2008, 20: 225006 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|