Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1365-1375    DOI: 10.11900/0412.1961.2021.00511
  研究论文 本期目录 | 过刊浏览 |
GH3600镍基高温合金极薄带的制备及尺寸效应
于少霞, 王麒, 邓想涛(), 王昭东()
东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips
YU Shaoxia, WANG Qi, DENG Xiangtao(), WANG Zhaodong()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
Shaoxia YU, Qi WANG, Xiangtao DENG, Zhaodong WANG. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. Acta Metall Sin, 2023, 59(10): 1365-1375.

全文: PDF(6247 KB)   HTML
摘要: 

采用冷轧+退火工艺,得到了厚度为0.07 mm的GH3600镍基高温合金极薄带,研究了冷轧压下量和退火温度对合金组织和力学性能的影响,分析了厚度变化引起的组织和力学性能变化。结果表明:随着冷轧压下量的增加,合金中的晶粒沿轧制方向被拉长,退火孪晶逐渐消失;退火后得到完全再结晶组织,随着退火温度的升高,晶粒尺寸增加,带材强度和硬度下降;退火温度相同,压下量较大时,再结晶晶粒尺寸较小,材料的屈服强度较高;随着带材厚度变薄,沿带材厚度方向上晶粒层减少。当采用1000和1050℃热处理时,带材的晶粒迅速粗化,在0.07 mm的极薄带材中会出现异常粗大的晶粒,导致沿带材厚度方向上部分区域出现单层晶,带材的抗拉强度和延伸率随带材厚度/平均晶粒尺寸比值的减小呈现“越小越弱”的特点。在800~900℃退火后,GH3600极薄带材平均晶粒尺寸约为7 μm,局部取向差为0.5左右,屈服强度和抗拉强度分别为400及600 MPa以上,延伸率为13%左右,带材具有较好的综合性能。

关键词 镍基高温合金极薄带冷轧退火尺寸效应力学性能    
Abstract

Nickel-based superalloys have gathered much attention recently due to their excellent performance at high temperatures and corrosion resistance. Furthermore, their advancement is a crucial indicator to determine the development level of metallic materials. Thus, rapid development in microsystem technology which focuses on development of lightweight and miniaturized materials is required. Moreover, the demand for micromaterials such as ultra-thin strips is also growing, leading to higher demand and better performance requirements. China's production of ultra-thin strips started relatively late and nickel-based ultra-thin strips rely on imports. Strengthening the production research of nickel-based ultra-thin strips, meeting the needs of aerospace and emerging microsystems, and removing import dependence are key issues that need to be addressed in future. The accurate acquisition of microstructure variations and strip properties after thinning and heat treatment is crucial in controlling the forming accuracy and preventing defects. Remarkably, the GH3600 nickel-based superalloy with thicknesses from 0.5 mm with polycrystalline layer to 0.07 mm with local single crystal layer was obtained by cold rolling and annealing. The effects of cold rolling reduction and annealing temperature on the microstructure and mechanical properties of the superalloy were investigated, and changes in the microstructure and mechanical properties caused by thickness variation were analyzed. The results reveal that with the increase of cold rolling reduction, the austenite grains in the alloy are elongated along the rolling direction, and the annealing twins gradually disappear. A complete recrystallization microstructure was obtained after further annealing, and grain size increased with the annealing temperature while the strength and hardness decreased. After annealing at the same temperature, the material's yield strength increases with the reduction and refinement of the recrystallized grain. However, as the strip thickness decreases, the grain layer decreases along the direction of the strip thickness. After annealing at 1000 and 1050oC, abnormal coarse grains appear in 0.07 mm thick strips, leading to the appearance of single grains in some areas along the thickness direction of the ultra-thin strips. The tensile strength and elongation of the strip are “smaller and weaker” with the decrease of strip thickness/average grain size ratio due to the size effect. The comparative analysis demonstrated that the average grain size of GH3600 ultra-thin strips annealed at 800-900oC is approximately 7 μm, the local orientation difference is approximately 0.5, the yield and tensile strengths could reach up to 400 and 600 MPa, and the elongation is approximately 13%, respectively.

Key wordsnickel-based superalloy    ultra-thin strip    cold rolling    annealing    size effect    mechanical property
收稿日期: 2021-11-29     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51874089)
通讯作者: 邓想涛,dengxt@mail.neu.edu.cn,主要从事高性能特种合金成型过程中的组织性能控制研究;
王昭东,zhdwang@mail.neu.edu.cn,主要从事金属材料的轧制及热处理研究
Corresponding author: DENG Xiangtao, associate professor, Tel: (024)83686415, E-mail: dengxt@mail.neu.edu.cn;
WANG Zhaodong, professor, Tel: (024)83686426, E-mail: zhdwang@mail.neu.edu.cn
作者简介: 于少霞,女,1998年生,博士生
图1  0.5 mm厚的GH3600镍基高温合金带材微观组织的OM像
图2  不同厚度GH3600镍基高温合金冷轧带材组织的OM像
图3  GH3600镍基高温合金冷轧带材硬度随厚度变化的曲线
图4  800~1050℃退火后不同厚度GH3600镍基高温合金带材微观组织的OM像
图5  800℃退火后不同厚度GH3600镍基高温合金带材的晶粒取向散布(GOS)图
图6  经不同退火温度处理的不同厚度GH3600镍基高温合金带材的带对比(BC)和晶界(GB)叠加图
图7  经不同退火温度处理的不同厚度GH3600镍基高温合金带材的反极图(IPF)
图8  不同温度退火后不同厚度GH3600镍基高温合金带材的工程应力-应变曲线
Thickness / mm800oC900oC1000oC1050oC
0.2539.538.437.138.4
0.12521.325.717.820.7
0.0713.312.310.25.4
表1  不同厚度GH3600镍基高温合金带材的延伸率随退火温度的变化 (%)
图9  不同温度退火后0.125 mm厚GH3600镍基高温合金带材拉伸断口形貌的SEM像
图10  不同温度退火后0.07 mm厚GH3600镍基高温合金带材拉伸断口形貌的SEM像
图11  经不同退火温度处理的不同厚度GH3600镍基高温合金带材的晶粒尺寸分布图
T / DYield strengthTensile strengthElongation
MPaMPa%
9.143063613.3
3.536656410.2
1.93444385.4
表2  0.07 mm厚GH3600镍基高温合金带材屈服强度、抗拉强度、延伸率随带材厚度/平均晶粒尺寸(T / D)的变化
1 Zhang C X, Chen M H, Lei X J, et al. Research on forming limits of superalloy GH600 sheet [J]. J. Aeronaut. Mater., 2015, 35(6): 35
1 张成祥, 陈明和, 雷晓晶 等. GH600合金薄板成形极限研究 [J]. 航空材料学报, 2015, 35(6): 35
2 Ma F M, Wang H. Overview of microsystem technology and its development [J]. Electron. Compon. Mater., 2019, 38(6): 12
2 马福民, 王 惠. 微系统技术现状及发展综述 [J]. 电子元件与材料, 2019, 38(6): 12
3 Cui R Q, Wu F J, Li Z, et al. Development of MAV configurations and key techniques [J]. Mech. Eng. Autom., 2012, (1): 197
3 崔瑞强, 吴伏家, 李 震 等. 微型飞行器结构的发展及关键技术 [J]. 机械工程与自动化, 2012, (1): 197
4 Liu X. Study on the theory of producible rolling thickness and the buckling deformation of oblique cross wave in ultra-thin strip rolling [D]. Qinhuangdao: Yanshan University, 2020
4 刘 晓. 极薄带材适轧厚度理论及斜向交叉浪形屈曲变形研究 [D]. 秦皇岛: 燕山大学, 2020
5 Chen W L. Technology of copper foil production by electrodeposition [J]. Plat. Flnish., 1989, 11(1): 24
5 陈文亮. 电解沉积法生产铜箔的工艺技术 [J]. 电镀与精饰, 1989, 11(1): 24
6 Zhang P, Su X L, Tang X Q, et al. Preparation of TiN films by magnetron sputtering method and evaluation of their properties [J]. Mater. Prot., 2020, 53(9): 76
6 张 朋, 苏晓磊, 唐显琴 等. 磁控溅射法制备TiN薄膜及其性能研究 [J]. 材料保护, 2020, 53(9): 76
7 He C A, Wang Q G, Qu Z M, et al. Optimization and application of vanadium dioxide thin films by using magnetron sputtering method [J]. J. Mater. Sci. Eng., 2020, 38: 629
7 何长安, 王庆国, 曲兆明 等. 基于磁控溅射法的二氧化钒薄膜制备技术优化及应用 [J]. 材料科学与工程学报, 2020, 38: 629
8 Cao J, Wang Z, Murotani T, et al. Effect of process of polycrystalline silicon thin films prepared by vacuum evaporation on organization and performance [J]. Surf. Technol., 2011, 40(2): 83
8 曹 健, 王 宙, 室谷贵之 等. 真空蒸镀多晶硅薄膜工艺对其组织和性能的影响 [J]. 表面技术, 2011, 40(2): 83
9 Zhang C H, Xue S B, Xiao G Z, et al. Research status of micron rare metal foil [J]. Mater. Rep., 2020, 34: 13139
9 张聪惠, 薛少博, 肖桂枝 等. 微米级稀有金属箔材研究现状 [J]. 材料导报, 2020, 34: 13139
10 Huo H X, Sun Z D, Liu P C, et al. Study on manufacturing process for paper-thin steel strip of grain oriented silicon steel with thickness of 0.08 mm for medium frequency equipment [J]. Sci. Technol. Baotou Steel, 2021, 47(1): 50
10 霍慧贤, 孙振东, 刘鹏程 等. 0.08 mm厚中频用取向硅钢极薄带制作工艺研究 [J]. 包钢科技, 2021, 47(1): 50
11 Bai F M, Yin L B, Liu Y H, et al. Preparation and microstructure properties of low oxygen high-purity titanium metal foil [J]. J. Anhui Univ. Technol. (Nat. Sci.), 2020, 37: 309
11 白凤梅, 尹理波, 刘云昊 等. 低氧高纯钛极薄带的制备及其组织性能 [J]. 安徽工业大学学报(自然科学版), 2020, 37: 309
12 Yu Q B, Liu X H, Sun Y, et al. Combination forming rolling of metal aluminum at room temperature [J]. Sci. Sin. (Technol.), 2019, 49: 411
12 于庆波, 刘相华, 孙 莹 等. 室温下金属铝的组合成形轧制 [J]. 中国科学: 技术科学, 2019, 49: 411
13 Dong X H, Wang Q, Zhang H M, et al. Research progress of size effect in micro-forming [J]. Sci. Sin. (Technol.), 2013, 43: 115
13 董湘怀, 王 倩, 章海明 等. 微成形中尺寸效应研究的进展 [J]. 中国科学: 技术科学, 2013, 43: 115
14 Tang D L, Liu X H, Song M. Micro size effect of commercial pure aluminum rolled at room and cryogenic temperature [J]. Trans. Mater. Heat Treat., 2015, 36(2): 32
14 汤德林, 刘相华, 宋 孟. 工业纯铝在室温和深冷轧制条件下的微尺寸效应 [J]. 材料热处理学报, 2015, 36(2): 32
15 Zou G P, Wang D D, Wang R R, et al. Experimental study on size effect of Ni-Ti shape memory alloy [J]. Trans. Mater. Heat Treat., 2012, 33(12): 41
15 邹广平, 王丹丹, 王瑞瑞 等. 镍钛形状记忆合金尺寸效应的实验研究 [J]. 材料热处理学报, 2012, 33(12): 41
16 Sharon J A, Zhang Y, Mompiou F, et al. Discerning size effect strengthening in ultrafine-grained Mg thin films [J]. Scr. Mater., 2014, 75: 10
doi: 10.1016/j.scriptamat.2013.10.016
17 Yu Q B, Liu X H, Tang D L. Extreme extensibility of copper foil under compound forming conditions [J]. Sci. Rep., 2013, 3: 3556
doi: 10.1038/srep03556 pmid: 24352217
18 Michel J F, Picart P. Size effects on the constitutive behaviour for brass in sheet metal forming [J]. J. Mater. Process. Technol., 2003, 141: 439
doi: 10.1016/S0924-0136(03)00570-3
19 Lederer M, Gröger V, Khatibi G, et al. Size dependency of mechanical properties of high purity aluminium foils [J]. Mater. Sci. Eng., 2010, A527: 590
20 Pan J S, Tong J M, Tian M B. Foundation of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 177
20 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 177
21 Huang Z H. Study on hot deformation behavior and recrystallization behavior evolution of hot pressing sintered NiAl [D]. Harbin: Harbin Institute of Technology, 2017
21 黄臻瀚. 粉末热压烧结NiAl高温变形及动态再结晶行为演化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
22 Li X F, Lei K, Song P, et al. Strengthening of aluminum alloy 2219 by thermo-mechanical treatment [J]. J. Mater. Eng. Perform., 2015, 24: 3905
doi: 10.1007/s11665-015-1665-0
23 Sun L, Xu Z T, Peng L F, et al. Effect of grain size on the ductile-brittle fracture behavior of commercially pure titanium sheet metals [J]. Mater. Sci. Eng., 2021, A822: 141630
24 Cui Z Q, Qin Y C. Metallogy and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2011: 194
24 崔忠圻, 覃耀春. 金属学与热处理 [M]. 第 2版, 北京: 机械工业出版社, 2011: 194
25 Ma F, Zhang J M, Xu K W. Surface-energy-driven abnormal grain growth in Cu and Ag films [J]. Appl. Surf. Sci., 2005, 242: 55
doi: 10.1016/j.apsusc.2004.07.068
26 Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
26 李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
27 Wang G, Yin L M, Yao Z X, et al. Influence of solution treatment on microstructure and properties of Inconel600 alloy TIG welded joint [J]. Hot Work. Technol., 2017, 46(5): 221
27 王 刚, 尹立孟, 姚宗湘 等. 固溶处理对Inconel600合金TIG接头组织和性能的影响 [J]. 热加工工艺, 2017, 46(5): 221
28 Zhao X S, Liu Y, Kong C, et al. Research on thickness size effect of asymmetric rolled and annealed copper foils [J]. J. Plast. Eng., 2021, 28(5): 126
28 赵祥帅, 刘 粤, Kong C 等. 异步轧制与退火铜箔的厚度尺寸效应研究 [J]. 塑性工程学报, 2021, 28(5): 126
doi: 10.3969/j.issn.1007-2012.2021.05.014
29 Song M, Liu X H, Sun X K, et al. Preparation and size effect of single layer grain ultra-thin strip [J]. Trans. Mater. Heat Treat., 2016, 37(suppl.1) : 5
29 宋 孟, 刘相华, 孙祥坤 等. 单层晶金属极薄带的制备及其尺寸效应 [J]. 材料热处理学报, 2016, 37(): 5
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[11] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.