Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 979-991    DOI: 10.11900/0412.1961.2021.00515
  综述 本期目录 | 过刊浏览 |
p型方钴矿热电材料纳米-介观尺度微结构调控
刘志愿1,2(), 王永贵2, 赵成玉2, 杨婷2, 夏爱林1,2
1.安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002
2.安徽工业大学 材料科学与工程学院 马鞍山 243002
Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials
LIU Zhiyuan1,2(), WANG Yonggui2, ZHAO Chengyu2, YANG Ting2, XIA Ailin1,2
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China
2.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
引用本文:

刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
Zhiyuan LIU, Yonggui WANG, Chengyu ZHAO, Ting YANG, Ailin XIA. Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials[J]. Acta Metall Sin, 2022, 58(8): 979-991.

全文: PDF(3589 KB)   HTML
摘要: 

方钴矿热电材料具有优异的电输运性能,是热电器件核心部件最有前途的候选材料之一。热电器件需要性能相匹配的p型和n型方钴矿热电材料,然而p型方钴矿材料的热电性能和力学性能远低于n型方钴矿材料,因此提升p型方钴矿材料的热电性能和力学性能对于开发高效热电器件具有重要意义。本文总结了近年来在纳米-介观尺度调控p型方钴矿热电材料微结构的主要研究进展。通过微结构的调控可显著提升p型方钴矿材料的热电性能和力学性能,为热电器件的应用提供科学和技术支撑。

关键词 p型方钴矿热电材料纳米-介观调控微结构热电性能    
Abstract

Skutterudite thermoelectric materials are one of the most promising candidates for critical components in thermoelectric devices because of their excellent electrical transport properties. Thermoelectric devices require p- and n-type skutterudite materials with matching properties. However, the p-type skutterudite materials have considerably worse thermoelectric and mechanical properties than those of n-type. Thus, it is important to enhance the thermoelectric and mechanical properties of p-type skutterudite materials for the development of high-efficiency thermoelectric devices. This study summarizes the recent research progress on the nano-mesoscopic scale regulation of the microstructure for p-type skutterudite thermoelectric materials. The thermoelectric and mechanical properties of p-type skutterudite materials can be notably enhanced by adjusting the microstructure at the nano-mesoscopic scale; thus, providing scientific and technical supports for the thermoelectric device's application.

Key wordsp-type skutterudite thermoelectric material    nano-mesoscopic regulation    microstructure    thermoelectric property
收稿日期: 2021-11-29     
ZTFLH:  TG132.24  
基金资助:国家自然科学基金项目(51872006);国家创新创业本科培养计划项目(S202110360181)
作者简介: 刘志愿,男,1982年生,副教授,博士
图1  纳米-介观尺度p型方钴矿热电材料的微结构调控方法[34,40~46]
图2  具有低维纳米结构的p型方钴矿材料La0.5Ce0.5Fe3CoSb12样品的SEM像[40],p型填充方钴矿Ce0.45Nd0.45Fe3.5Co0.5Sb12粉体经球磨5 h后的SEM像[25],通过传统固相反应和熔融旋甩法制备的Nd0.9Fe3CoSb12样品的SEM像[41],La x Ti0.1Ga0.1Fe3CoSb12样品甩带自由面的SEM像及La x Ti0.1Ga0.1Fe3CoSb12熔融旋甩样品和退火样品的热电优值(ZT值)[60]
图3  Co0.95Fe0.05Sb3薄膜的SEM像[49],Co1 - x Fe x Sb3 (0 ≤ x ≤ 0.1)样品的功率因子(S2σ)[49],CoSb3 + 0.72%Ti薄膜的SEM像[42],Ti掺杂的CoSb3薄膜的生长过程示意图[42],纳米结构和Ti基点缺陷的各种声子散射机制[42],不同Ti含量CoSb3薄膜的Seebeck系数和ZT值与温度(T)的依赖关系曲线图[42]
图4  含纳米孔结构的CeFe4Sb11.9Te0.1样品的FESEM像和CeFe4Sb12 - x Te x 方钴矿材料的ZT值[34],具有纳米膜结构的CeFe3.8Zn0.2Sb12样品的FESEM像和CeFe4 - x Zn x Sb12样品的ZT值[43]
图5  CeFe3CoSb12 + 5%MoO2 (摩尔分数)纳米复合样品的SEM像[44],CeFe3CoSb12和(CeFe3CoSb12)1 - x (MoO2) x 复合样品的ZT值[44],MmFe4Sb12 + 16%Mm2O3 (质量分数)纳米复合材料(Nano-composite 2)断口的SEM像[74],MmFe4Sb12 + 16%Mm2O3纳米复合热电材料及参考样品的ZT值[74]
图6  CoSb3/0.2%G FeCl3 (质量分数)样品横截面SEM像[77],CoSb3/x%G FeCl3 (质量分数)样品的功率因子[77],CoSb3/3%MoS2 (质量分数)纳米复合材料断裂面SEM像[45],CoSb3/xMoS2纳米复合材料的ZT值[45]
图7  La0.8Ti0.1Ga0.1Fe3CoSb12/0.1Fe3Si样品SEM像[33],La0.8Ti0.1Ga0.1Fe3CoSb12/xFe3Si纳米复合材料的ZT值[33],Nd0.6Fe2Co2-Sb11.6Sn0.4样品的SEM像[46],Nd0.6Fe2Co2Sb12 - x Sn x 纳米复合材料的ZT值[46],CeFe4Sb12 + 0.2Ce样品的FESEM像[82],CeFe4Sb12 + 0.1Ce样品的TEM像[82],CeFe4Sb12 + yCe纳米复合材料的ZT值[82]
图8  CeFe4Sb12/3%Cf (体积分数)样品断裂面的SEM像和抛光面的SEM像[84],Ce0.85Fe3CoSb12/1.4%rGO (还原氧化石墨烯,体积分数)样品的断面SEM像[85],石墨烯增韧机理示意图和Ce0.85Fe3CoSb12/y%rGO (体积分数)复合材料的弯曲强度(σ)和断裂韧性(KIC)[85]
1 Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321: 1457
doi: 10.1126/science.1158899 pmid: 18787160
2 Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090
3 Jing H M, Tong X, Zhu J L, et al. Microstructural analysis and thermoelectric properties of skutterudite CoSb3 materials produced by melt spinning and spark plasma sintering [J]. Ceram. Int., 2021, 47: 24916
doi: 10.1016/j.ceramint.2021.05.218
4 Zhu J L, Tong X, Niu S, et al. Effects of magnetization on thermoelectric transport properties of CoSb3 material [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2021, 36: 353
doi: 10.1007/s11595-021-2416-8
5 Fleurial J P, Caillat T, Borshchevsky A. Skutterudites: A new class of promising thermoelectric materials [C]. AIP Conf. Proc., 1994, 316: 40
6 Tong X, Liu Z Y, Zhu J L, et al. Research progress of p-type Fe-based skutterudite thermoelectric materials [J]. Front. Mater. Sci., 2021, 15: 317
doi: 10.1007/s11706-021-0563-7
7 Liu Z Y, Zhu W T, Nie X L, et al. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 12493
doi: 10.1007/s10854-019-01609-1
8 Rowe D M. CRC Handbook of Thermoelectrics [M]. Boca Raton: CRC Press, 1995: 407
9 Takabatake T, Suekuni K, Nakayama T, et al. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory [J]. Rev. Mod. Phys., 2014, 86: 669
doi: 10.1103/RevModPhys.86.669
10 Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports [J]. J. Am. Chem. Soc., 2011, 133: 7837
doi: 10.1021/ja111199y
11 Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in Ba xRy Co4Sb12 (R = La, Ce, and Sr) [J]. Appl. Phys. Lett., 2007, 90: 192111
doi: 10.1063/1.2737422
12 Shi X, Kong H, Li C P, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type Ba x Yb y Co4Sb12 double-filled skutterudites [J]. Appl. Phys. Lett., 2008, 92: 182101
doi: 10.1063/1.2920210
13 Rogl G, Grytsiv A, Rogl P, et al. n-type skutterudites (R, Ba, Yb) y -Co4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 [J]. Acta Mater., 2014, 63: 30
doi: 10.1016/j.actamat.2013.09.039
14 Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials [J]. Science, 1996, 272: 1325
pmid: 8662465
15 Zhou L N, Qiu P F, Uher C, et al. Thermoelectric properties of p-type Yb x La y Fe2.7Co1.3Sb12 double-filled skutterudites [J]. Intermetallics, 2013, 32: 209
doi: 10.1016/j.intermet.2012.08.005
16 Zhao W Y, Liu Z Y, Sun Z G, et al. Superparamagnetic enhancement of thermoelectric performance [J]. Nature, 2017, 549: 247
doi: 10.1038/nature23667
17 Liu Z Y, Zhu J L, Wei P, et al. Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension [J]. ACS Appl. Mater. Interfaces, 2019, 11: 45875
doi: 10.1021/acsami.9b16309
18 Zhao W Y, Liu Z Y, Wei P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials [J]. Nat. Nanotechnol., 2017, 12: 55
doi: 10.1038/nnano.2016.182
19 Li H, Su X L, Tang X F, et al. Grain boundary engineering with nano-scale InSb producing high performance In x Ce y Co4Sb12 + z skutterudite thermoelectrics [J]. J. Materiomics, 2017, 3: 273
doi: 10.1016/j.jmat.2017.07.003
20 Xiong Z, Chen X H, Huang X Y, et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy [J]. Acta Mater., 2010, 58: 3995
doi: 10.1016/j.actamat.2010.03.025
21 Zhu J L, Liu Z Y, Tong X, et al. Synergistic optimization of electrical-thermal-mechanical properties of the In-filled CoSb3 material by introducing Bi0.5Sb1.5Te3 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2021, 13: 23894
doi: 10.1021/acsami.1c03351
22 Ghosh S, Shankar G, Karati A, et al. Preferential phonon scattering and low energy carrier filtering by interfaces of in situ formed InSb nanoprecipitates and GaSb nanoinclusions for enhanced thermoelectric performance of In0.2Co4Sb12 [J]. Dalton Trans., 2020, 49: 15883
doi: 10.1039/D0DT03429K
23 Liu R H, Yang J, Chen X H, et al. p-type skutterudites RxMy -Fe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction [J]. Intermetallics, 2011, 19: 1747
doi: 10.1016/j.intermet.2011.06.010
24 Prado-Gonjal J, Vaqueiro P, Nuttall C, et al. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process [J]. J. Alloys Compd., 2017, 695: 3598
doi: 10.1016/j.jallcom.2016.11.404
25 Jie Q, Wang H Z, Liu W S, et al. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing [J]. Phys. Chem. Chem. Phys., 2013, 15: 6809
doi: 10.1039/c3cp50327e
26 Meng X F, Cai W, Liu Z H, et al. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition [J]. Acta Mater., 2015, 98: 405
doi: 10.1016/j.actamat.2015.07.027
27 Guo L J, Wang G W, Peng K L, et al. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics [J]. Scr. Mater., 2016, 116: 26
doi: 10.1016/j.scriptamat.2016.01.035
28 Tan G J, Liu W, Wang S Y, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance [J]. J. Mater. Chem., 2013, 1A: 12657
29 Li X G, Liu W D, Li S M, et al. Impurity removal leading to high-performance CoSb3-based skutterudites with synergistic carrier concentration optimization and thermal conductivity reduction [J]. ACS Appl. Mater. Interfaces, 2021, 13: 54185
doi: 10.1021/acsami.1c16622
30 Rogl G, Grytsiv A, Heinrich P, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12 - xXx (X = Ge, Sn) reaching ZT > 1.3 [J]. Acta Mater., 2015, 91: 227
doi: 10.1016/j.actamat.2015.03.008
31 Rogl G, Grytsiv A, Rogl P, et al. Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12 [J]. Acta Mater., 2013, 61: 6778
doi: 10.1016/j.actamat.2013.07.052
32 Tan G J, Chi H, Liu W, et al. Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions [J]. J. Mater. Chem., 2015, 3C: 8372
33 Peng S Y, Sun J H, Cui B, et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe3Si nanoprecipitate [J]. Inorg. Chem. Front., 2017, 4: 1697
doi: 10.1039/C7QI00304H
34 Fu L W, Yang J Y, Jiang Q H, et al. Thermoelectric performance enhancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores [J]. J. Electron. Mater., 2016, 45: 1240
doi: 10.1007/s11664-015-3973-4
35 Yu J, Zhao W Y, Zhou H Y, et al. Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials [J]. Scr. Mater., 2013, 68: 643
doi: 10.1016/j.scriptamat.2012.12.029
36 Liu Z Y, Zhu J L, Tong X, et al. A review of CoSb3-based skutterudite thermoelectric materials [J]. J. Adv. Ceram., 2020, 9: 647
doi: 10.1007/s40145-020-0407-4
37 Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials [J]. Adv. Mater., 2007, 19: 1043
doi: 10.1002/adma.200600527
38 Zhao W Y, Liang Z, Wei P, et al. Enhanced thermoelectric performance via randomly arranged nanopores: Excellent transport properties of YbZn2Sb2 nanoporous materials [J]. Acta Mater., 2012, 60: 1741
doi: 10.1016/j.actamat.2011.11.056
39 Rogl G, Rogl P. How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites [J]. Mater. Today Phys., 2017, 3: 48
40 Lu P X, Wu F, Han H L, et al. Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite [J]. J. Alloys Compd., 2010, 505: 255
doi: 10.1016/j.jallcom.2010.06.040
41 Guo L J, Zhang Y M, Zheng Y, et al. Super-rapid preparation of nanostructured Nd x Fe3CoSb12 compounds and their improved thermoelectric performance [J]. J. Electron. Mater., 2016, 45: 1271
doi: 10.1007/s11664-015-3997-9
42 Liang G X, Zheng Z H, Li F, et al. Nano structure Ti-doped skutterudite CoSb3 thin films through layer inter-diffusion for enhanced thermoelectric properties [J]. J. Eur. Ceram. Soc., 2019, 39: 4842
doi: 10.1016/j.jeurceramsoc.2019.06.044
43 Tan G J, Wang S Y, Li H, et al. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4 - x-Zn x Sb12 [J]. J. Solid State Chem., 2012, 187: 316
doi: 10.1016/j.jssc.2012.01.045
44 Katsuyama S, Okada H, Miyajima K. Thermoelectric properties of CeFe3CoSb12-MoO2 composite [J]. Mater. Trans., 2008, 49: 1731
doi: 10.2320/matertrans.E-MRA2008819
45 Yadav S, Chaudhary S, Pandya D K. Incorporation of MoS2 nanosheets in CoSb3 matrix as an efficient novel strategy to enhance its thermoelectric performance [J]. Appl. Surf. Sci., 2018, 435: 1265
doi: 10.1016/j.apsusc.2017.11.262
46 Duan F F, Zhang L, Dong J Y, et al. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites [J]. J. Alloys Compd., 2015, 639: 68
doi: 10.1016/j.jallcom.2015.03.074
47 Rao A M, Ji X H, Tritt T M. Properties of nanostructured one-dimensional and composite thermoelectric materials [J]. MRS Bull., 2006, 31: 218
doi: 10.1557/mrs2006.48
48 Hicks L, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor [J]. Phys. Rev., 1993, 47B: 16631
49 Yadav S, Chaudhary S, Pandya D K. Enhancing thermoelectric properties of p-type CoSb3 skutterudite by Fe doping [J]. Mater. Sci. Semicon. Process., 2021, 127: 105721.
doi: 10.1016/j.mssp.2021.105721
50 Li J Q, Feng X W, Sun W A, et al. Solvothermal synthesis of nano-sized skutterudite Co4 - x Fe x Sb12 powders [J]. Mater. Chem. Phys., 2008, 112: 57
doi: 10.1016/j.matchemphys.2008.05.017
51 Mi J L, Zhao X B, Zhu T J, et al. Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3 [J]. J. Alloys Compd., 2005, 399: 260
doi: 10.1016/j.jallcom.2005.03.013
52 Mi J L, Zhao X B, Zhu T J, et al. Solvothermal synthesis and electrical transport properties of skutterudite CoSb3 [J]. J. Alloys Compd., 2006, 417: 269
doi: 10.1016/j.jallcom.2005.09.033
53 Lan Y C, Minnich A J, Chen G, et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach [J]. Adv. Funct. Mater., 2010, 20: 357
doi: 10.1002/adfm.200901512
54 Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively [J]. Acta Mater., 2014, 76: 434
doi: 10.1016/j.actamat.2014.05.051
55 Bao S Q, Yang J Y, Zhu W, et al. Preparation and thermoelectric properties of La filled skutterudites by mechanical alloying and hot pressing [J]. Mater. Lett., 2006, 60: 2029
doi: 10.1016/j.matlet.2005.12.074
56 Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type Ce x Fe3CoSb12 skutterudite thermoelectric materials [J]. Intermetallics, 2019, 105: 44
doi: 10.1016/j.intermet.2018.11.010
57 Lee S, Lee K H, Kim Y M, et al. Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance [J]. Acta Mater., 2018, 142: 8
doi: 10.1016/j.actamat.2017.09.044
58 Lee K H, Bae S H, Choi S M. Phase formation behavior and thermoelectric transport properties of p-type Yb x Fe3CoSb12 prepared by melt spinning and spark plasma sintering [J]. Materials, 2020, 13: 87
doi: 10.3390/ma13010087
59 Shaheen N, Shen X C, Javed M S, et al. Super-fast preparation of Nd-filled p-type skutterudite compounds with enhanced thermoelectric properties [J]. Ceram. Int., 2017, 43: 7443
doi: 10.1016/j.ceramint.2017.03.011
60 Geng H Y, Zhang J L, He T H, et al. Microstructure evolution and mechanical properties of melt spun skutterudite-based thermoelectric materials [J]. Materials, 2020, 13: 984
doi: 10.3390/ma13040984
61 Thompson D R, Liu C, Yang J, et al. Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport [J]. Acta Mater., 2015, 92: 152
doi: 10.1016/j.actamat.2015.03.032
62 Hopkins P E, Rakich P T, Olsson R H, et al. Origin of reduction in phonon thermal conductivity of microporous solids [J]. Appl. Phys. Lett., 2009, 95: 161902
doi: 10.1063/1.3250166
63 Hsieh T Y, Lin H, Hsieh T J, et al. Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores [J]. J. Appl. Phys., 2012, 111: 124329
doi: 10.1063/1.4730962
64 Zhang L, Duan F F, Li X D, et al. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12 - x Ge x through spontaneous precipitates [J]. J. Appl. Phys., 2013, 114: 083715
65 He Q Y, Hu S J, Tang X G, et al. The great improvement effect of pores on ZT in Co1 - x Ni x Sb3 system [J]. Appl. Phys. Lett., 2008, 93: 042108
66 Faleev S V, Léonard F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J]. Phys. Rev., 2008, 77B: 214304
67 Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials [J]. NPG Asia Mater., 2010, 2: 152
doi: 10.1038/asiamat.2010.138
68 Yamini S A, Wang H, Ginting D, et al. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 11476
doi: 10.1021/am502140h
69 Sootsman J, Kong H J, Uher C, et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring [J]. Angew. Chem. Int. Ed., 2008, 47: 8618
doi: 10.1002/anie.200803934 pmid: 18846585
70 Heremans J P, Wiendlocha B, Chamoire A M. Resonant levels in bulk thermoelectric semiconductors [J]. Energy Environ. Sci., 2012, 5: 5510
doi: 10.1039/C1EE02612G
71 Yang J H, Yip H L, Jen A K Y. Rational design of advanced thermoelectric materials [J]. Adv. Energy Mater., 2013, 3, 549
doi: 10.1002/aenm.201200514
72 Li J H, Tan Q, Li J F, et al. BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties [J]. Adv. Funct. Mater., 2013, 23: 4317
doi: 10.1002/adfm.201300146
73 Katsuyama S, Okada H. Synthesis of rare earth filled skutterudite composite with dispersed oxide particles by mechanical milling and SPS techniques and investigation of its thermoelectric properties [J]. J. Jpn. Soc. Powder. Powder. Metall., 2007, 54: 375
doi: 10.2497/jjspm.54.375
74 Zhang L, Grytsiv A, Kerber M, et al. MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: Kinetics of formation and transport properties [J]. J. Alloys Compd., 2009, 481: 106
doi: 10.1016/j.jallcom.2009.03.109
75 Zhou H Y, Zhao W Y, Zhu W T, et al. Preparation and enhanced thermoelectric properties of p-type BaFe12O19/CeFe3CoSb12 magnetic nanocomposite materials [J]. J. Electron. Mater., 2014, 43: 1498
doi: 10.1007/s11664-013-2746-1
76 Schmitz A, Schmid C, de Boor J, et al. Dispersion of multi-walled carbon nanotubes in skutterudites and its effect on thermoelectric and mechanical properties [J]. J. Nanosci. Nanotechnol., 2017, 17: 1547
doi: 10.1166/jnn.2017.13727
77 Zong P A, Mao Z D, Ou Y X, et al. Enhanced thermoelectric properties of binary CoSb3 by embedding FeCl3-intercalated graphene nanosheets [J]. J. Eur. Ceram. Soc., 2021, 41: 6523
doi: 10.1016/j.jeurceramsoc.2021.06.016
78 Zhou C, Sakamoto J, Morelli D. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions [J]. J. Electron. Mater., 2011, 40: 547
doi: 10.1007/s11664-010-1444-5
79 Zhou C, Sakamoto J, Morelli D. High-temperature thermoelectric properties of p-type Yb-filled skutterudite nanocomposites with FeSb2 nanoinclusions [J]. J. Electron. Mater., 2012, 41: 1030
doi: 10.1007/s11664-011-1831-6
80 Guo L J, Cai Z W, Xu X L, et al. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring [J]. J. Nanosci. Nanotechnol., 2016, 16: 3841
doi: 10.1166/jnn.2016.11900
81 Benyahia M, Vaney J B, Leroy E, et al. Thermoelectric properties in double-filled Ce0.3In y Fe1.5Co2.5Sb12 p-type skutterudites [J]. J. Alloys Compd., 2017, 696: 1031
doi: 10.1016/j.jallcom.2016.12.040
82 Tan G J, Zheng Y, Tang X F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures [J]. Appl. Phys. Lett., 2013, 103: 183904
doi: 10.1063/1.4827555
83 Ravi V, Firdosy S, Caillat T, et al. Mechanical properties of thermoelectric skutterudites [C]. AIP Conf. Proc., 2008, 969: 656
84 Wan S, Huang X Y, Qiu P F, et al. The effect of short carbon fibers on the thermoelectric and mechanical properties of p-type CeFe4Sb12 skutterudite composites [J]. Mater. Des., 2015, 67: 379
doi: 10.1016/j.matdes.2014.11.050
85 Zong P A, Chen L D. Preparation and mechanical properties of Ce0.85Fe3CoSb12/rGO thermoelectric nanocomposite [J]. J. Inorg. Mater., 2017, 32: 33
doi: 10.15541/jim20160220
85 宗鹏安, 陈立东. Ce 0.85Fe3CoSb12/rGO热电纳米复合材料的制备及其力学性能 [J]. 无机材料学报, 2017, 32: 33
86 Rogl G, Grytsiv A, Failamani F, et al. Attempts to further enhance ZT in skutterudites via nano-composites [J]. J. Alloys Compd., 2017, 695: 682
doi: 10.1016/j.jallcom.2016.10.114
87 Wen P F, Mei H, Zhai P C, et al. Effects of nano-α-Al2O3 dispersion on the thermoelectric and mechanical properties of CoSb3 composites [J]. J. Mater. Eng. Perform., 2013, 22: 3561
doi: 10.1007/s11665-013-0641-9
88 Fan Y C, Igarashi G, Jiang W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene [J]. Carbon, 2015, 90: 274
doi: 10.1016/j.carbon.2015.04.029
[1] 张海天, 张湘义. 有序异构功能材料[J]. 金属学报, 2022, 58(11): 1459-1466.
[2] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[5] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[6] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[7] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[8] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[9] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[10] 韩世伟, 石多奇, 杨晓光, 苗国磊. 微结构相关的高循环疲劳分散性计算方法研究*[J]. 金属学报, 2016, 52(3): 289-297.
[11] 陈思,秦飞,安彤,王瑞铭,赵静毅. 退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*[J]. 金属学报, 2016, 52(2): 202-208.
[12] 郭强, 郭杏林, 樊俊铃, 吴承伟. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4): 400-406.
[13] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[14] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[15] 喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响[J]. 金属学报, 2014, 50(11): 1350-1356.