|
|
p型方钴矿热电材料纳米-介观尺度微结构调控 |
刘志愿1,2(), 王永贵2, 赵成玉2, 杨婷2, 夏爱林1,2 |
1.安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002 2.安徽工业大学 材料科学与工程学院 马鞍山 243002 |
|
Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials |
LIU Zhiyuan1,2(), WANG Yonggui2, ZHAO Chengyu2, YANG Ting2, XIA Ailin1,2 |
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China 2.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China |
引用本文:
刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
Zhiyuan LIU,
Yonggui WANG,
Chengyu ZHAO,
Ting YANG,
Ailin XIA.
Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials[J]. Acta Metall Sin, 2022, 58(8): 979-991.
1 |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321: 1457
doi: 10.1126/science.1158899
pmid: 18787160
|
2 |
Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090
|
3 |
Jing H M, Tong X, Zhu J L, et al. Microstructural analysis and thermoelectric properties of skutterudite CoSb3 materials produced by melt spinning and spark plasma sintering [J]. Ceram. Int., 2021, 47: 24916
doi: 10.1016/j.ceramint.2021.05.218
|
4 |
Zhu J L, Tong X, Niu S, et al. Effects of magnetization on thermoelectric transport properties of CoSb3 material [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2021, 36: 353
doi: 10.1007/s11595-021-2416-8
|
5 |
Fleurial J P, Caillat T, Borshchevsky A. Skutterudites: A new class of promising thermoelectric materials [C]. AIP Conf. Proc., 1994, 316: 40
|
6 |
Tong X, Liu Z Y, Zhu J L, et al. Research progress of p-type Fe-based skutterudite thermoelectric materials [J]. Front. Mater. Sci., 2021, 15: 317
doi: 10.1007/s11706-021-0563-7
|
7 |
Liu Z Y, Zhu W T, Nie X L, et al. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 12493
doi: 10.1007/s10854-019-01609-1
|
8 |
Rowe D M. CRC Handbook of Thermoelectrics [M]. Boca Raton: CRC Press, 1995: 407
|
9 |
Takabatake T, Suekuni K, Nakayama T, et al. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory [J]. Rev. Mod. Phys., 2014, 86: 669
doi: 10.1103/RevModPhys.86.669
|
10 |
Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports [J]. J. Am. Chem. Soc., 2011, 133: 7837
doi: 10.1021/ja111199y
|
11 |
Yang J, Zhang W, Bai S Q, et al. Dual-frequency resonant phonon scattering in Ba xRy Co4Sb12 (R = La, Ce, and Sr) [J]. Appl. Phys. Lett., 2007, 90: 192111
doi: 10.1063/1.2737422
|
12 |
Shi X, Kong H, Li C P, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type Ba x Yb y Co4Sb12 double-filled skutterudites [J]. Appl. Phys. Lett., 2008, 92: 182101
doi: 10.1063/1.2920210
|
13 |
Rogl G, Grytsiv A, Rogl P, et al. n-type skutterudites (R, Ba, Yb) y -Co4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 [J]. Acta Mater., 2014, 63: 30
doi: 10.1016/j.actamat.2013.09.039
|
14 |
Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials [J]. Science, 1996, 272: 1325
pmid: 8662465
|
15 |
Zhou L N, Qiu P F, Uher C, et al. Thermoelectric properties of p-type Yb x La y Fe2.7Co1.3Sb12 double-filled skutterudites [J]. Intermetallics, 2013, 32: 209
doi: 10.1016/j.intermet.2012.08.005
|
16 |
Zhao W Y, Liu Z Y, Sun Z G, et al. Superparamagnetic enhancement of thermoelectric performance [J]. Nature, 2017, 549: 247
doi: 10.1038/nature23667
|
17 |
Liu Z Y, Zhu J L, Wei P, et al. Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension [J]. ACS Appl. Mater. Interfaces, 2019, 11: 45875
doi: 10.1021/acsami.9b16309
|
18 |
Zhao W Y, Liu Z Y, Wei P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials [J]. Nat. Nanotechnol., 2017, 12: 55
doi: 10.1038/nnano.2016.182
|
19 |
Li H, Su X L, Tang X F, et al. Grain boundary engineering with nano-scale InSb producing high performance In x Ce y Co4Sb12 + z skutterudite thermoelectrics [J]. J. Materiomics, 2017, 3: 273
doi: 10.1016/j.jmat.2017.07.003
|
20 |
Xiong Z, Chen X H, Huang X Y, et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy [J]. Acta Mater., 2010, 58: 3995
doi: 10.1016/j.actamat.2010.03.025
|
21 |
Zhu J L, Liu Z Y, Tong X, et al. Synergistic optimization of electrical-thermal-mechanical properties of the In-filled CoSb3 material by introducing Bi0.5Sb1.5Te3 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2021, 13: 23894
doi: 10.1021/acsami.1c03351
|
22 |
Ghosh S, Shankar G, Karati A, et al. Preferential phonon scattering and low energy carrier filtering by interfaces of in situ formed InSb nanoprecipitates and GaSb nanoinclusions for enhanced thermoelectric performance of In0.2Co4Sb12 [J]. Dalton Trans., 2020, 49: 15883
doi: 10.1039/D0DT03429K
|
23 |
Liu R H, Yang J, Chen X H, et al. p-type skutterudites RxMy -Fe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction [J]. Intermetallics, 2011, 19: 1747
doi: 10.1016/j.intermet.2011.06.010
|
24 |
Prado-Gonjal J, Vaqueiro P, Nuttall C, et al. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process [J]. J. Alloys Compd., 2017, 695: 3598
doi: 10.1016/j.jallcom.2016.11.404
|
25 |
Jie Q, Wang H Z, Liu W S, et al. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing [J]. Phys. Chem. Chem. Phys., 2013, 15: 6809
doi: 10.1039/c3cp50327e
|
26 |
Meng X F, Cai W, Liu Z H, et al. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition [J]. Acta Mater., 2015, 98: 405
doi: 10.1016/j.actamat.2015.07.027
|
27 |
Guo L J, Wang G W, Peng K L, et al. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics [J]. Scr. Mater., 2016, 116: 26
doi: 10.1016/j.scriptamat.2016.01.035
|
28 |
Tan G J, Liu W, Wang S Y, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance [J]. J. Mater. Chem., 2013, 1A: 12657
|
29 |
Li X G, Liu W D, Li S M, et al. Impurity removal leading to high-performance CoSb3-based skutterudites with synergistic carrier concentration optimization and thermal conductivity reduction [J]. ACS Appl. Mater. Interfaces, 2021, 13: 54185
doi: 10.1021/acsami.1c16622
|
30 |
Rogl G, Grytsiv A, Heinrich P, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12 - xXx (X = Ge, Sn) reaching ZT > 1.3 [J]. Acta Mater., 2015, 91: 227
doi: 10.1016/j.actamat.2015.03.008
|
31 |
Rogl G, Grytsiv A, Rogl P, et al. Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12 [J]. Acta Mater., 2013, 61: 6778
doi: 10.1016/j.actamat.2013.07.052
|
32 |
Tan G J, Chi H, Liu W, et al. Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions [J]. J. Mater. Chem., 2015, 3C: 8372
|
33 |
Peng S Y, Sun J H, Cui B, et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe3Si nanoprecipitate [J]. Inorg. Chem. Front., 2017, 4: 1697
doi: 10.1039/C7QI00304H
|
34 |
Fu L W, Yang J Y, Jiang Q H, et al. Thermoelectric performance enhancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores [J]. J. Electron. Mater., 2016, 45: 1240
doi: 10.1007/s11664-015-3973-4
|
35 |
Yu J, Zhao W Y, Zhou H Y, et al. Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials [J]. Scr. Mater., 2013, 68: 643
doi: 10.1016/j.scriptamat.2012.12.029
|
36 |
Liu Z Y, Zhu J L, Tong X, et al. A review of CoSb3-based skutterudite thermoelectric materials [J]. J. Adv. Ceram., 2020, 9: 647
doi: 10.1007/s40145-020-0407-4
|
37 |
Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials [J]. Adv. Mater., 2007, 19: 1043
doi: 10.1002/adma.200600527
|
38 |
Zhao W Y, Liang Z, Wei P, et al. Enhanced thermoelectric performance via randomly arranged nanopores: Excellent transport properties of YbZn2Sb2 nanoporous materials [J]. Acta Mater., 2012, 60: 1741
doi: 10.1016/j.actamat.2011.11.056
|
39 |
Rogl G, Rogl P. How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites [J]. Mater. Today Phys., 2017, 3: 48
|
40 |
Lu P X, Wu F, Han H L, et al. Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite [J]. J. Alloys Compd., 2010, 505: 255
doi: 10.1016/j.jallcom.2010.06.040
|
41 |
Guo L J, Zhang Y M, Zheng Y, et al. Super-rapid preparation of nanostructured Nd x Fe3CoSb12 compounds and their improved thermoelectric performance [J]. J. Electron. Mater., 2016, 45: 1271
doi: 10.1007/s11664-015-3997-9
|
42 |
Liang G X, Zheng Z H, Li F, et al. Nano structure Ti-doped skutterudite CoSb3 thin films through layer inter-diffusion for enhanced thermoelectric properties [J]. J. Eur. Ceram. Soc., 2019, 39: 4842
doi: 10.1016/j.jeurceramsoc.2019.06.044
|
43 |
Tan G J, Wang S Y, Li H, et al. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4 - x-Zn x Sb12 [J]. J. Solid State Chem., 2012, 187: 316
doi: 10.1016/j.jssc.2012.01.045
|
44 |
Katsuyama S, Okada H, Miyajima K. Thermoelectric properties of CeFe3CoSb12-MoO2 composite [J]. Mater. Trans., 2008, 49: 1731
doi: 10.2320/matertrans.E-MRA2008819
|
45 |
Yadav S, Chaudhary S, Pandya D K. Incorporation of MoS2 nanosheets in CoSb3 matrix as an efficient novel strategy to enhance its thermoelectric performance [J]. Appl. Surf. Sci., 2018, 435: 1265
doi: 10.1016/j.apsusc.2017.11.262
|
46 |
Duan F F, Zhang L, Dong J Y, et al. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites [J]. J. Alloys Compd., 2015, 639: 68
doi: 10.1016/j.jallcom.2015.03.074
|
47 |
Rao A M, Ji X H, Tritt T M. Properties of nanostructured one-dimensional and composite thermoelectric materials [J]. MRS Bull., 2006, 31: 218
doi: 10.1557/mrs2006.48
|
48 |
Hicks L, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor [J]. Phys. Rev., 1993, 47B: 16631
|
49 |
Yadav S, Chaudhary S, Pandya D K. Enhancing thermoelectric properties of p-type CoSb3 skutterudite by Fe doping [J]. Mater. Sci. Semicon. Process., 2021, 127: 105721.
doi: 10.1016/j.mssp.2021.105721
|
50 |
Li J Q, Feng X W, Sun W A, et al. Solvothermal synthesis of nano-sized skutterudite Co4 - x Fe x Sb12 powders [J]. Mater. Chem. Phys., 2008, 112: 57
doi: 10.1016/j.matchemphys.2008.05.017
|
51 |
Mi J L, Zhao X B, Zhu T J, et al. Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3 [J]. J. Alloys Compd., 2005, 399: 260
doi: 10.1016/j.jallcom.2005.03.013
|
52 |
Mi J L, Zhao X B, Zhu T J, et al. Solvothermal synthesis and electrical transport properties of skutterudite CoSb3 [J]. J. Alloys Compd., 2006, 417: 269
doi: 10.1016/j.jallcom.2005.09.033
|
53 |
Lan Y C, Minnich A J, Chen G, et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach [J]. Adv. Funct. Mater., 2010, 20: 357
doi: 10.1002/adfm.200901512
|
54 |
Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively [J]. Acta Mater., 2014, 76: 434
doi: 10.1016/j.actamat.2014.05.051
|
55 |
Bao S Q, Yang J Y, Zhu W, et al. Preparation and thermoelectric properties of La filled skutterudites by mechanical alloying and hot pressing [J]. Mater. Lett., 2006, 60: 2029
doi: 10.1016/j.matlet.2005.12.074
|
56 |
Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type Ce x Fe3CoSb12 skutterudite thermoelectric materials [J]. Intermetallics, 2019, 105: 44
doi: 10.1016/j.intermet.2018.11.010
|
57 |
Lee S, Lee K H, Kim Y M, et al. Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance [J]. Acta Mater., 2018, 142: 8
doi: 10.1016/j.actamat.2017.09.044
|
58 |
Lee K H, Bae S H, Choi S M. Phase formation behavior and thermoelectric transport properties of p-type Yb x Fe3CoSb12 prepared by melt spinning and spark plasma sintering [J]. Materials, 2020, 13: 87
doi: 10.3390/ma13010087
|
59 |
Shaheen N, Shen X C, Javed M S, et al. Super-fast preparation of Nd-filled p-type skutterudite compounds with enhanced thermoelectric properties [J]. Ceram. Int., 2017, 43: 7443
doi: 10.1016/j.ceramint.2017.03.011
|
60 |
Geng H Y, Zhang J L, He T H, et al. Microstructure evolution and mechanical properties of melt spun skutterudite-based thermoelectric materials [J]. Materials, 2020, 13: 984
doi: 10.3390/ma13040984
|
61 |
Thompson D R, Liu C, Yang J, et al. Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport [J]. Acta Mater., 2015, 92: 152
doi: 10.1016/j.actamat.2015.03.032
|
62 |
Hopkins P E, Rakich P T, Olsson R H, et al. Origin of reduction in phonon thermal conductivity of microporous solids [J]. Appl. Phys. Lett., 2009, 95: 161902
doi: 10.1063/1.3250166
|
63 |
Hsieh T Y, Lin H, Hsieh T J, et al. Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores [J]. J. Appl. Phys., 2012, 111: 124329
doi: 10.1063/1.4730962
|
64 |
Zhang L, Duan F F, Li X D, et al. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12 - x Ge x through spontaneous precipitates [J]. J. Appl. Phys., 2013, 114: 083715
|
65 |
He Q Y, Hu S J, Tang X G, et al. The great improvement effect of pores on ZT in Co1 - x Ni x Sb3 system [J]. Appl. Phys. Lett., 2008, 93: 042108
|
66 |
Faleev S V, Léonard F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J]. Phys. Rev., 2008, 77B: 214304
|
67 |
Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials [J]. NPG Asia Mater., 2010, 2: 152
doi: 10.1038/asiamat.2010.138
|
68 |
Yamini S A, Wang H, Ginting D, et al. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 11476
doi: 10.1021/am502140h
|
69 |
Sootsman J, Kong H J, Uher C, et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring [J]. Angew. Chem. Int. Ed., 2008, 47: 8618
doi: 10.1002/anie.200803934
pmid: 18846585
|
70 |
Heremans J P, Wiendlocha B, Chamoire A M. Resonant levels in bulk thermoelectric semiconductors [J]. Energy Environ. Sci., 2012, 5: 5510
doi: 10.1039/C1EE02612G
|
71 |
Yang J H, Yip H L, Jen A K Y. Rational design of advanced thermoelectric materials [J]. Adv. Energy Mater., 2013, 3, 549
doi: 10.1002/aenm.201200514
|
72 |
Li J H, Tan Q, Li J F, et al. BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties [J]. Adv. Funct. Mater., 2013, 23: 4317
doi: 10.1002/adfm.201300146
|
73 |
Katsuyama S, Okada H. Synthesis of rare earth filled skutterudite composite with dispersed oxide particles by mechanical milling and SPS techniques and investigation of its thermoelectric properties [J]. J. Jpn. Soc. Powder. Powder. Metall., 2007, 54: 375
doi: 10.2497/jjspm.54.375
|
74 |
Zhang L, Grytsiv A, Kerber M, et al. MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: Kinetics of formation and transport properties [J]. J. Alloys Compd., 2009, 481: 106
doi: 10.1016/j.jallcom.2009.03.109
|
75 |
Zhou H Y, Zhao W Y, Zhu W T, et al. Preparation and enhanced thermoelectric properties of p-type BaFe12O19/CeFe3CoSb12 magnetic nanocomposite materials [J]. J. Electron. Mater., 2014, 43: 1498
doi: 10.1007/s11664-013-2746-1
|
76 |
Schmitz A, Schmid C, de Boor J, et al. Dispersion of multi-walled carbon nanotubes in skutterudites and its effect on thermoelectric and mechanical properties [J]. J. Nanosci. Nanotechnol., 2017, 17: 1547
doi: 10.1166/jnn.2017.13727
|
77 |
Zong P A, Mao Z D, Ou Y X, et al. Enhanced thermoelectric properties of binary CoSb3 by embedding FeCl3-intercalated graphene nanosheets [J]. J. Eur. Ceram. Soc., 2021, 41: 6523
doi: 10.1016/j.jeurceramsoc.2021.06.016
|
78 |
Zhou C, Sakamoto J, Morelli D. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions [J]. J. Electron. Mater., 2011, 40: 547
doi: 10.1007/s11664-010-1444-5
|
79 |
Zhou C, Sakamoto J, Morelli D. High-temperature thermoelectric properties of p-type Yb-filled skutterudite nanocomposites with FeSb2 nanoinclusions [J]. J. Electron. Mater., 2012, 41: 1030
doi: 10.1007/s11664-011-1831-6
|
80 |
Guo L J, Cai Z W, Xu X L, et al. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring [J]. J. Nanosci. Nanotechnol., 2016, 16: 3841
doi: 10.1166/jnn.2016.11900
|
81 |
Benyahia M, Vaney J B, Leroy E, et al. Thermoelectric properties in double-filled Ce0.3In y Fe1.5Co2.5Sb12 p-type skutterudites [J]. J. Alloys Compd., 2017, 696: 1031
doi: 10.1016/j.jallcom.2016.12.040
|
82 |
Tan G J, Zheng Y, Tang X F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures [J]. Appl. Phys. Lett., 2013, 103: 183904
doi: 10.1063/1.4827555
|
83 |
Ravi V, Firdosy S, Caillat T, et al. Mechanical properties of thermoelectric skutterudites [C]. AIP Conf. Proc., 2008, 969: 656
|
84 |
Wan S, Huang X Y, Qiu P F, et al. The effect of short carbon fibers on the thermoelectric and mechanical properties of p-type CeFe4Sb12 skutterudite composites [J]. Mater. Des., 2015, 67: 379
doi: 10.1016/j.matdes.2014.11.050
|
85 |
Zong P A, Chen L D. Preparation and mechanical properties of Ce0.85Fe3CoSb12/rGO thermoelectric nanocomposite [J]. J. Inorg. Mater., 2017, 32: 33
doi: 10.15541/jim20160220
|
85 |
宗鹏安, 陈立东. Ce 0.85Fe3CoSb12/rGO热电纳米复合材料的制备及其力学性能 [J]. 无机材料学报, 2017, 32: 33
|
86 |
Rogl G, Grytsiv A, Failamani F, et al. Attempts to further enhance ZT in skutterudites via nano-composites [J]. J. Alloys Compd., 2017, 695: 682
doi: 10.1016/j.jallcom.2016.10.114
|
87 |
Wen P F, Mei H, Zhai P C, et al. Effects of nano-α-Al2O3 dispersion on the thermoelectric and mechanical properties of CoSb3 composites [J]. J. Mater. Eng. Perform., 2013, 22: 3561
doi: 10.1007/s11665-013-0641-9
|
88 |
Fan Y C, Igarashi G, Jiang W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene [J]. Carbon, 2015, 90: 274
doi: 10.1016/j.carbon.2015.04.029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|